Skip to main content
Log in

A posteriori error analysis of an ultra-weak local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present and analyze a posteriori error estimates for the ultra-weak local discontinuous Galerkin (UWLDG) method applied to nonlinear fourth-order boundary-value problems for ordinary differential equations of the form \(-u^{(4)}=f(x,u)\). Building upon the superconvergence results established in Baccouch (Numer Algor 92(4):1983–2023, 2023), we demonstrate the convergence of the UWLDG solution, in the \(L^2\)-norm, towards a special p-degree interpolating polynomial when piecewise polynomials of degree at most \(p\ge 2\) are employed. The convergence order is proven to be \(p+2\). Additionally, we decompose the UWLDG error on each element into two components. The dominant component is proportional to a special \((p+1)\)-degree polynomial, represented as a linear combination of Legendre polynomials with degrees \(p-1\), p, and \(p+1\). The second component converges to zero with an order of \(p+2\) in the \(L^2\)-norm. These findings enable the construction of computationally efficient a posteriori error estimates for the UWLDG method. These estimates are obtained by solving a local problem on each element without imposing boundary conditions. Furthermore, we establish that, for smooth solutions, these a posteriori error estimates converge to the exact errors in the \(L^2\)-norm as the mesh is refined, with a convergence order of \(p+2\). In addition, we prove that the global effectivity index converges to unity at a rate of \(\mathcal {O}(h)\). Finally, we present a local AMR procedure that makes use of our local and global a posteriori error estimates. Numerical results are provided to illustrate the reliability and efficiency of the proposed error estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903–914 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Oden, J.T.: A posteriori Error Estimation in Finite Element Analysis. John Wiley, New York (2000)

    Book  Google Scholar 

  4. Aziz, A.: Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations. Academic Press, (1975)

  5. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numer. Math. Scie. Comput. Clarendon Press, (2001)

  6. Babuška, I., Durán, R., Rodríguez, R.: Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29(4), 947–964 (1992)

    Article  MathSciNet  Google Scholar 

  7. Baccouch, M.: Asymptotically exact a posteriori error estimates for the local discontinuous Galerkin method applied to nonlinear convection-diffusion problems. J. Sci. Comput. 76(3), 1868–1904 (2018)

    Article  MathSciNet  Google Scholar 

  8. Baccouch, M.: Analysis of optimal superconvergence of the local discontinuous Galerkin method for nonlinear fourth-order boundary value problems. Numerical Algorithms 86(3), 1615–1650 (2021)

    Article  MathSciNet  Google Scholar 

  9. Baccouch, M.: Two efficient and reliable a posteriori error estimates for the local discontinuous Galerkin method applied to linear elliptic problems on Cartesian grids. J. Sci. Comput. 87(76), 1–34 (2021)

    MathSciNet  Google Scholar 

  10. Baccouch, M.: A superconvergent ultra-weak local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems. Numerical Algorithms 92(4), 1983–2023 (2023)

    Article  MathSciNet  Google Scholar 

  11. Baccouch, M., Temimi, H., Ben-Romdhane, M.: Optimal error estimates and superconvergence of an ultra weak discontinuous Galerkin method for fourth-order boundary-value problems. Appl. Numer. Math. 137, 91–115 (2019)

    Article  MathSciNet  Google Scholar 

  12. Basile, F., Chapelier, J.-B., de la Llave Plata, M., Laraufie, R., Frey, P.: Unstructured h-and hp-adaptive strategies for discontinuous Galerkin methods based on a posteriori error estimation for compressible flows. Comput. & Fluids 233:105245, (2022)

  13. Burden, R.L., Faires, J.D., Burden, A.M.: Numerical analysis. Cengage Learning, Boston, MA (2016)

    Google Scholar 

  14. Busuioc, A.V., Ratiu, T.S.: The second grade fluid and averaged Euler equations with Navier-slip boundary conditions. Nonlinearity 16(3), 1119 (2003)

    Article  MathSciNet  Google Scholar 

  15. Chawla, M., Katti, C.: Finite difference methods for two-point boundary value problems involving high order differential equations. BIT Numer. Math. 19(1), 27–33 (1979)

    Article  MathSciNet  Google Scholar 

  16. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  17. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland Pub. Co., Amsterdam-New York-Oxford (1978)

    Google Scholar 

  18. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  19. De Coster, C., Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions. Math. Scie. Eng. Elsevier, (2006)

  20. Despres, B.: Sur une formulation variationnelle de type ultra-faible. Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 318(10):939–944, (1994)

  21. Doedel, E.J.: Finite difference collocation methods for nonlinear two point boundary value problems. SIAM J. Numer. Anal. 16(2), 173–185 (1979)

    Article  MathSciNet  Google Scholar 

  22. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  Google Scholar 

  23. Dong, Z., Mascotto, L., Sutton, O.J.: Residual-based a posteriori error estimates for hp-discontinuous Galerkin discretizations of the biharmonic problem. SIAM J. Numer. Anal. 59(3), 1273–1298 (2021)

    Article  MathSciNet  Google Scholar 

  24. Gazzola, F., Grunau, H-C., Sweers, G.: Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic equations in bounded domains. Springer Science & Business Media, (2010)

  25. Grossmann, C., Roos, H.-G., Stynes, M.: Numerical treatment of partial differential equations, volume 154. Springer, (2007)

  26. Han, W., He, L., Wang, F.: Optimal order error estimates for discontinuous Galerkin methods for the wave equation. J. Sci. Comput. 78, 121–144 (2019)

    Article  MathSciNet  Google Scholar 

  27. He, J.-H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167(1–2), 57–68 (1998)

    Article  MathSciNet  Google Scholar 

  28. He, J.-H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Eng. 167(1–2), 69–73 (1998)

    Article  Google Scholar 

  29. He, J.-H.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34(4), 699–708 (1999)

    Article  Google Scholar 

  30. He, J.-H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)

    Article  MathSciNet  Google Scholar 

  31. He, J.-H., Wu, X.-H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, Solitons & Fractals 29(1), 108–113 (2006)

    Article  MathSciNet  Google Scholar 

  32. Keller, H.B.: Numerical Methods for Two-point Boundary-value Problems. A Blaisdell Book in Numerical Analysis and Computer Science. Blaisdell, Waltham, MA (1968)

    Google Scholar 

  33. Kreuzer, C., Georgoulis, E.: Convergence of adaptive discontinuous Galerkin methods. Math. Comput. 87(314), 2611–2640 (2018)

    Article  MathSciNet  Google Scholar 

  34. Liu, Y., Tao, Q., Shu, C. W.: Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. ESAIM: M2AN, 54(6):1797–1820, (2020)

  35. Ma, T.F., Da Silva, J.: Iterative solutions for a beam equation with nonlinear boundary conditions of third order. Appl. Math. Comput. 159(1), 11–18 (2004)

    MathSciNet  Google Scholar 

  36. Merle, F., Prohl, A.: A posteriori error analysis and adaptivity for high-dimensional elliptic and parabolic boundary value problems. Numer. Math. pp. 1–58, (2023)

  37. Nochetto, R.H., Veeser, A.: Primer of Adaptive Finite Element Methods, pp. 125–225. Springer Berlin Heidelberg, Berlin, Heidelberg, (2012)

  38. Rabizadeh, E., Bagherzadeh, A.S., Anitescu, C., Alajlan, N., Rabczuk, T.: Pointwise dual weighted residual based goal-oriented a posteriori error estimation and adaptive mesh refinement in 2D/3D thermo-mechanical multifield problems. Comput. Methods Appl. Mech. Eng. 359, 112666 (2020)

    Article  MathSciNet  Google Scholar 

  39. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, (1973)

  40. Schumaker, L.: Spline functions: basic theory. Cambridge University Press, Cambridge New York (2007)

    Book  Google Scholar 

  41. Segeth, K.: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension. Numer. Math. 83(3), 455–475 (1999)

    Article  MathSciNet  Google Scholar 

  42. Tao, Q., Xu, Y., Shu, C.-W.: An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comput. 89(326), 2753–2783 (2020)

    Article  MathSciNet  Google Scholar 

  43. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of plates and shells. McGraw-hill, (1959)

  44. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. Comput. Appl. Math. 50, 67–83 (1994)

    Article  MathSciNet  Google Scholar 

  45. Wahlbin, L.: Superconvergence in Galerkin finite element methods. Lect. Notes Math. Springer, (1995)

  46. Wang, L., Xiong, C., Wu, H., Luo, F.: A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math. 45(5–6), 2623–2646 (2019)

    Article  MathSciNet  Google Scholar 

  47. Xu, Y., Shu, C.-W.: Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)

    Article  MathSciNet  Google Scholar 

  48. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their valuable comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Ethics declarations

Ethics approval

The author agrees that this manuscript has followed the rules of ethics presented in the journal’s Ethical Guidelines for Journal Publication.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccouch, M. A posteriori error analysis of an ultra-weak local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01773-4

Keywords

Mathematics Subject Classification (2010)

Navigation