Skip to main content

Advertisement

Log in

Theoretical Analysis of the Buckling Behaviors of Inhomogeneous Shape Memory Polymer Composite Laminates Considering Prestrains

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite (SMPC) laminate, along with the residual strain during SMPC fabrication, results in buckling deformation of the inhomogeneous laminate. This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains. Both linear and nonlinear buckling analyses are carried out using the energy method. The influences of prestrain biaxiality, temperature, and ply angle on the buckling wavelength, critical buckling prestrain, and buckling amplitude are calculated. The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain, while the amplitude is almost independent of temperature. In addition, the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zare M, Prabhakaran MP, Parvin N, Ramakrishna S. Thermally-induced two-way shape memory polymers: mechanisms, structures, and applications. Chem Eng J. 2019;374:706–20.

    Article  Google Scholar 

  2. Wang XT, Zhang FH, Liu LW, Leng JS, Liu YJ, Zhao XF, et al. A humidity-driven flexible carbon nitride film with multiple deformations. Smart Mater Struct. 2019;28(10):7.

    Article  Google Scholar 

  3. Memis NK, Kaplan S. Production of thermal and water responsive shape memory polyurethane nanocomposite filaments with cellulose nanowhisker incorporation. Cellulose. 2021;28(11):7075–96.

    Article  Google Scholar 

  4. Dumlu H, Marquardt A, Zirdehi EM, Varnik F, Shen YC, Neuking K, et al. A mechanical analysis of chemically stimulated linear shape memory polymer actuation. Materials. 2021;14(3):21.

    Article  Google Scholar 

  5. Pantuso E, De Filpo G, Nicoletta FP. Light-responsive polymer membranes. advanced. Opt Mater. 2019;7(16):35.

    Google Scholar 

  6. Roudbarian N, Baniasadi M, Nayyeri P, Ansari M, Hedayati R, Baghani M. Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing. Smart Mater Struct. 2021;30(10):12.

    Article  Google Scholar 

  7. Gu JP, Zhang XP, Duan H, Wang MQ, Sun HY. A hygro-thermo-mechanical constitutive model for shape memory polymers filled with nano-carbon powder. Int J Smart Nano Mater. 2021;12(3):286–306.

    Article  Google Scholar 

  8. Li FF, Scarpa F, Lan X, Liu LW, Liu YJ, Leng JS. Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites. Compos Part A-Appl Sci Manuf. 2019;116:169–79.

    Article  Google Scholar 

  9. Zhang D, Liu LW, Lan X, Leng JS, Liu YJ. Synchronous deployed design concept triggered by carbon fibre reinforced shape memory polymer composites. Compos Struct. 2022;290:15.

    Article  Google Scholar 

  10. Zhao F, Zheng XY, Zhou SC, Zhou B, Xue SF, Zhang Y. Constitutive model for epoxy shape memory polymer with regulable phase transition temperature. Int J Smart Nano Mater. 2021;12(1):72–87.

    Article  Google Scholar 

  11. Deng YD, Lan X, Leng JS. Unidirectional carbon fiber reinforced cyanate-based shape polymer composite with variable stiffness. Adv Eng Mater. 2022;24(12):2200580.

    Article  Google Scholar 

  12. Karunakaran K, Singh SS, Kitey R. Investigating the role of filler shape on the dynamic mechanical properties of glass-filled epoxy composites. Polym Compos. 2022;43:6912–25.

    Article  Google Scholar 

  13. Leng JS, Lan X, Liu YJ, Du SY. Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56(7):1077–135.

    Article  Google Scholar 

  14. Li FF, Liu YJ, Leng JS. Progress of shape memory polymers and their composites in aerospace applications. Smart Mater Struct. 2019;28(10):23.

    Article  Google Scholar 

  15. Dayyoub T, Maksimkin AV, Filippova OV, Tcherdyntsev VV, Telyshev DV. Shape memory polymers as smart materials: a review. Polymers. 2022;14(17):26.

    Article  Google Scholar 

  16. Sokolowski WM, Tan SC. Advanced self-deployable structures for space applications. J Spacecr Rocket. 2007;44(4):750–4.

    Article  Google Scholar 

  17. Luo L, Zhang FH, Leng JS. Shape memory epoxy resin and its composites: from materials to applications. Research. 2022;2022:25.

    Article  Google Scholar 

  18. Liu ZX, Hao SD, Lan X, Bian WF, Liu LW, Li QF, et al. Thermal design and analysis of a flexible solar array system based on shape memory polymer composites. Smart Mater Struct. 2022;31(2):14.

    Article  Google Scholar 

  19. Wucher B, Lani F, Pardoen T, Bailly C, Martiny P. Tooling geometry optimization for compensation of cure-induced distortions of a curved carbon/epoxy C-spar. Compos Part A-Appl Sci Manuf. 2014;56:27–35.

    Article  Google Scholar 

  20. Svanberg JM, Holmberg JA. An experimental investigation on mechanisms for manufacturing induced shape distortions in homogeneous and balanced laminates. Compos Part A-Appl Sci Manuf. 2001;32(6):827–38.

    Article  Google Scholar 

  21. Zhang C, Zhang GL, Xu J, Shi XP, Wang X. Review of curing deformation control methods for carbon fiber reinforced resin composites. Polym Compos. 2022;43(6):3350–70.

    Article  Google Scholar 

  22. Sironic L, Murray NW, Grzebieta RH. Buckling of wide struts/plates resting on isotropic foundations. Thin-Walled Struct. 1999;35(3):153–66.

    Article  Google Scholar 

  23. Liu X, Liu X, Zhou W. An analytical spectral stiffness method for buckling of rectangular plates on Winkler foundation subject to general boundary conditions. Appl Math Model. 2020;86:36–53.

    Article  MathSciNet  Google Scholar 

  24. Manshadi BD, Vassilopoulos AP, de Castro J, Keller T. Instability of thin-walled GFRP webs in cell-core sandwiches under combined bending and shear loads. Thin-Walled Struct. 2012;53:200–10.

    Article  Google Scholar 

  25. Yang J, Shen HS, Zhang L. Nonlinear local response of foam-filled sandwich plates with laminated faces under combined transverse and in-plane loads. Compos Struct. 2001;52(2):137–48.

    Article  Google Scholar 

  26. Cao PY, Niu KM. New unified model of composite sandwich panels/beams buckling introducing interlayer shear effects. Compos Struct. 2020;252:9.

    Article  Google Scholar 

  27. Topal U, Trung VD, Dede T, Nazarimofrad E. Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO. Struct Eng Mech. 2018;67(6):617–28.

    Google Scholar 

  28. Landau LD, Lifšic EM, Lifshitz EM, Kosevich AM, Pitaevskii LP. Theory of elasticity: volume 7: Elsevier; 1986.

  29. Huang ZY, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids. 2005;53(9):2101–18.

    Article  MathSciNet  Google Scholar 

  30. Huang SQ, Li QY, Feng XQ, Yu SW. Pattern instability of a soft elastic thin film under van der Waals forces. Mech Mater. 2006;38(1–2):88–99.

    Article  Google Scholar 

  31. Song J, Jiang H, Choi WM, Khang DY, Huang Y, Rogers JA. An analytical study of two-dimensional buckling of thin films on compliant substrates. J Appl Phys. 2008;103(1):10.

    Article  Google Scholar 

  32. Zhao H, Mu T, Lan X, Liu L, Liu Y, Leng J. Microbuckling behavior of unidirectional fiber-reinforced shape memory polymer composite undergoing compressive deformation. Compos Struct. 2022;297:115975.

    Article  Google Scholar 

  33. Zhao H, Lan X, Liu Y, Bhattacharyya D, Leng J. Flexural and shape memory properties of unidirectional glass and carbon fibers reinforced hybrid shape memory polymer composites. Smart Mater Struct. 2022;31(11):115024.

    Article  Google Scholar 

  34. Wei RF, Pan G, Jiang J, Shen KC, Lyu D. An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm. Thin-Walled Struct. 2019;142:160–70.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12102107 and 12272113) and China National Postdoctoral Program for Innovative Talents (No. BX2021090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanju Liu or Jinsong Leng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Cao, P., Li, F. et al. Theoretical Analysis of the Buckling Behaviors of Inhomogeneous Shape Memory Polymer Composite Laminates Considering Prestrains. Acta Mech. Solida Sin. 37, 271–284 (2024). https://doi.org/10.1007/s10338-023-00454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00454-4

Keywords

Navigation