Skip to main content

Advertisement

Log in

Diffuse Midline H3K27-Altered Gliomas in the Spinal Cord: A Systematic Review

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

To systematically review the clinical features, management, and outcomes of diffuse midline H3K27-altered gliomas of the spinal cord (DMG-SCs).

Methods

PubMed, Ovid EMBASE, Scopus, and Web of Science were searched from database inception to 23 September 2023 for histologically confirmed cases of DMG-SC. Patient demographics, tumor characteristics, management information, and survival outcomes were extracted and analyzed.

Results

A total of 279 patients from 39 studies were collected. Patients were mostly male (61%), with an average age of 32 years. Patients were treated with surgery, radiotherapy, and chemotherapy combined (31%) or surgery only (24%), and extent of resection was most often subtotal (38%). Temozolomide was the most common chemotherapeutic agent (81%). Radiation therapy was delivered with mean dose of 47 Gy in 23 fractions. At mean follow-up time of 21 months, 13% of patients were alive. Average median overall survival was 24 months (range of 13 to 40 months) with a median progression-free survival of 14 months. Historical WHO grades of 2 or 3 appeared to exhibit a longer average median overall survival time than that of grade 4 DMG-SCs (32 vs. 23 months, p = 0.009).

Conclusions

Outcomes for DMG-SCs are poor overall but appear to be favorable compared to intracranial DMGs. Despite the recent WHO 2021 grade 4 classification for all DMGs, given the differences in overall survival reported based on historical grading systems, future studies on DMG-SCs are needed to further define if DMG-SCs may represent a heterogeneous group of tumors with different prognoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data is available upon request in spreadsheet format.

References

  1. Klekamp J (2015) Spinal ependymomas. Part 1: Intramedullary ependymomas. Neurosurg Focus 39:E6. https://doi.org/10.3171/2015.5.FOCUS15161

  2. Reimer R, Onofrio BM (1985) Astrocytomas of the spinal cord in children and adolescents. J Neurosurg 63:669–675. https://doi.org/10.3171/jns.1985.63.5.0669

    Article  PubMed  CAS  Google Scholar 

  3. Hussain I, Parker WE, Barzilai O, Bilsky MH (2020) Surgical Management of Intramedullary Spinal Cord Tumors. Neurosurg Clin N Am 31:237–249. https://doi.org/10.1016/j.nec.2019.12.004

    Article  PubMed  Google Scholar 

  4. Minehan KJ, Shaw EG, Scheithauer BW et al (1995) Spinal cord astrocytoma: pathological and treatment considerations. J Neurosurg 83:590–595. https://doi.org/10.3171/jns.1995.83.4.0590

    Article  PubMed  CAS  Google Scholar 

  5. Zhang M, Iyer RR, Azad TD et al (2019) Genomic Landscape of Intramedullary Spinal Cord Gliomas. Sci Rep 9:18722. https://doi.org/10.1038/s41598-019-54286-9

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. Giordano M, Gerganov VM, Metwali H, et al (2013) Feasibility of cervical intramedullary diffuse glioma resection using intraoperative magnetic resonance imaging. Neurosurg Revhttps://doi.org/10.1007/s10143-013-0510-x

  7. She D, Lu Y, Xiong J et al (2019) MR imaging features of spinal pilocytic astrocytoma. BMC Med Imaging 19:5. https://doi.org/10.1186/s12880-018-0296-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Teng YD, Abd-El-Barr M, Wang L et al (2019) Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Exp Neurol 311:135–147. https://doi.org/10.1016/j.expneurol.2018.09.010

    Article  PubMed  Google Scholar 

  9. Louis DN, Giannini C, Capper D et al (2018) cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 135:639–642. https://doi.org/10.1007/s00401-018-1826-y

    Article  PubMed  Google Scholar 

  10. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  11. Mosaab A, El-Ayadi M, Khorshed EN et al (2020) Histone H3K27M Mutation Overrides Histological Grading in Pediatric Gliomas. Sci Rep 10:8368. https://doi.org/10.1038/s41598-020-65272-x

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schulte JD, Buerki RA, Lapointe S, et al (2020) Clinical, radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults. Neurooncol Adv 2:vdaa142. https://doi.org/10.1093/noajnl/vdaa142

  14. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  PubMed  CAS  Google Scholar 

  15. Wang Y-Z, Zhang Y-W, Liu W-H et al (2021) Spinal Cord Diffuse Midline Gliomas With H3 K27m-Mutant: Clinicopathological Features and Prognosis. Neurosurgery 89:300–307. https://doi.org/10.1093/neuros/nyab174

    Article  PubMed  Google Scholar 

  16. Jung JS, Choi YS, Ahn SS et al (2019) Differentiation between spinal cord diffuse midline glioma with histone H3 K27M mutation and wild type: comparative magnetic resonance imaging. Neuroradiology 61:313–322. https://doi.org/10.1007/s00234-019-02154-8

    Article  PubMed  Google Scholar 

  17. Chai R-C, Zhang Y-W, Liu Y-Q et al (2020) The molecular characteristics of spinal cord gliomas with or without H3 K27M mutation. Acta Neuropathol Commun 8:40. https://doi.org/10.1186/s40478-020-00913-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wierzbicki K, Ravi K, Franson A et al (2020) Targeting and Therapeutic Monitoring of H3K27M-Mutant Glioma. Curr Oncol Rep 22:19. https://doi.org/10.1007/s11912-020-0877-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  20. Howick J, Chalmers I, Glasziou P, et al Explanation of the 2011 OCEBM Levels of Evidence — Centre for Evidence-Based Medicine (CEBM), University of Oxford. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/explanation-of-the-2011-ocebm-levels-of-evidence. Accessed 20 Aug 2022

  21. Critical Appraisal Tools | JBI. https://jbi.global/critical-appraisal-tools. Accessed 30 Nov 2022

  22. Uppar A, Konar SK, B N N, Shukla D, (2019) H3K27M-Positive Primary Spinal Glioblastoma Presenting with Hemorrhage-A Rare Clinical Entity. World Neurosurg 126:223–227. https://doi.org/10.1016/j.wneu.2019.03.025

    Article  PubMed  Google Scholar 

  23. Khuong-Quang D-A, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447. https://doi.org/10.1007/s00401-012-0998-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Solomon DA, Wood MD, Tihan T et al (2016) Diffuse Midline Gliomas with Histone H3–K27M Mutation: A Series of 47 Cases Assessing the Spectrum of Morphologic Variation and Associated Genetic Alterations. Brain Pathol 26:569–580. https://doi.org/10.1111/bpa.12336

    Article  PubMed  CAS  Google Scholar 

  25. Lebrun L, Meléndez B, Blanchard O et al (2020) Clinical, radiological and molecular characterization of intramedullary astrocytomas. Acta Neuropathol Commun 8:128. https://doi.org/10.1186/s40478-020-00962-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cheng L, Wang L, Yao Q, et al (2021) Clinicoradiological characteristics of primary spinal cord H3 K27M-mutant diffuse midline glioma. J Neurosurg Spine 1–12. https://doi.org/10.3171/2021.4.SPINE2140

  27. Zhang Y-W, Chai R-C, Cao R et al (2020) Clinicopathological characteristics and survival of spinal cord astrocytomas. Cancer Med 9:6996–7006. https://doi.org/10.1002/cam4.3364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ostrom QT, Price M, Neff C et al (2022) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro Oncol 24:v1–v95. https://doi.org/10.1093/neuonc/noac202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang S, Yang X, Hong G (2009) Surgical Treatment of One Hundred Seventy-Four Intramedullary Spinal Cord Tumors. Spine 34:2705–2710. https://doi.org/10.1097/BRS.0b013e3181b43484

    Article  PubMed  Google Scholar 

  30. Kane PJ, el-Mahdy W, Singh A, et al (1999) Spinal intradural tumours: Part II--Intramedullary. Br J Neurosurg 13:558–563https://doi.org/10.1080/02688699943051

  31. Hersh AM, Patel J, Pennington Z, et al (2022) Perioperative outcomes and survival after surgery for intramedullary spinal cord tumors: a single-institution series of 302 patients. J Neurosurg Spine 1–11. https://doi.org/10.3171/2022.1.SPINE211235

  32. Bin-Alamer O, Jimenez AE, Azad TD et al (2022) H3K27M-Altered Diffuse Midline Gliomas Among Adult Patients: A Systematic Review of Clinical Features and Survival Analysis. World Neurosurg 165:e251–e264. https://doi.org/10.1016/j.wneu.2022.06.020

    Article  PubMed  Google Scholar 

  33. Banan R, Christians A, Bartels S, et al (2017) Absence of MGMT promoter methylation in diffuse midline glioma, H3 K27M-mutant. acta neuropathol commun 5:98. https://doi.org/10.1186/s40478-017-0500-2

  34. Zheng L, Gong J, Yu T et al (2022) Diffuse Midline Gliomas With Histone H3 K27M Mutation in Adults and Children. Am J Surg Pathol 46:863–871. https://doi.org/10.1097/PAS.0000000000001897

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186. https://doi.org/10.1038/s41571-020-00447-z

    Article  PubMed  Google Scholar 

  36. Eyüpoglu IY, Hore N, Merkel A, et al (2016) Supra-complete surgery via dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma. Oncotarget 7:25755–25768. https://doi.org/10.18632/oncotarget.8367

  37. McGirt MJ, Goldstein IM, Chaichana KL, et al (2008) Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery 63:55–60; discussion 60–61. https://doi.org/10.1227/01.NEU.0000335070.37943.09

  38. Butenschoen VM, Hubertus V, Janssen IK et al (2021) Surgical treatment and neurological outcome of infiltrating intramedullary astrocytoma WHO II–IV: a multicenter retrospective case series. J Neurooncol 151:181–191. https://doi.org/10.1007/s11060-020-03647-w

    Article  PubMed  Google Scholar 

  39. Raco A, Piccirilli M, Landi A et al (2010) High-grade intramedullary astrocytomas: 30 years’ experience at the Neurosurgery Department of the University of Rome “Sapienza”: Clinical article. J Neurosurg Spine 12:144–153. https://doi.org/10.3171/2009.6.SPINE08910

    Article  PubMed  Google Scholar 

  40. Kim MS, Chung CK, Choe G et al (2001) Intramedullary spinal cord astrocytoma in adults: postoperative outcome. J Neurooncol 52:85–94. https://doi.org/10.1023/a:1010680924975

    Article  PubMed  CAS  Google Scholar 

  41. Cooper PR (1989) Outcome after operative treatment of intramedullary spinal cord tumors in adults: intermediate and long-term results in 51 patients. Neurosurgery 25:855–859. https://doi.org/10.1097/00006123-198912000-00001

    Article  PubMed  CAS  Google Scholar 

  42. Garcés-Ambrossi GL, McGirt MJ, Mehta VA et al (2009) Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases: Clinical article. J Neurosurg Spine 11:591–599. https://doi.org/10.3171/2009.4.SPINE08159

    Article  PubMed  Google Scholar 

  43. Fakhreddine MH, Mahajan A, Penas-Prado M et al (2013) Treatment, prognostic factors, and outcomes in spinal cord astrocytomas. Neuro Oncol 15:406–412. https://doi.org/10.1093/neuonc/nos309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Babu R, Karikari IO, Owens TR, Bagley CA (2014) Spinal Cord Astrocytomas: A Modern 20-Year Experience at a Single Institution. Spine 39:533. https://doi.org/10.1097/BRS.0000000000000190

    Article  PubMed  Google Scholar 

  45. Minehan KJ, Brown PD, Scheithauer BW, et al (2009) Prognosis and Treatment of Spinal Cord Astrocytoma. International Journal of Radiation Oncology*Biology*Physics 73:727–733. https://doi.org/10.1016/j.ijrobp.2008.04.060

  46. Beneš V, Barsa P, Beneš V, Suchomel P (2009) Prognostic factors in intramedullary astrocytomas: a literature review. Eur Spine J 18:1397–1422. https://doi.org/10.1007/s00586-009-1076-8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Karremann M, Gielen GH, Hoffmann M et al (2018) Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol 20:123–131. https://doi.org/10.1093/neuonc/nox149

    Article  PubMed  CAS  Google Scholar 

  48. Jyothirmayi R, Madhavan J, Nair MK, Rajan B (1997) Conservative surgery and radiotherapy in the treatment of spinal cord astrocytoma. J Neurooncol 33:205–211. https://doi.org/10.1023/a:1005758313700

    Article  PubMed  CAS  Google Scholar 

  49. Radiation therapy and the management of intramedullary spinal cord tumors - PubMed. https://pubmed.ncbi.nlm.nih.gov/11016740/. Accessed 25 Jun 2023

  50. Akinduro OO, Garcia DP, Higgins DMO et al (2021) A multicenter analysis of the prognostic value of histone H3 K27M mutation in adult high-grade spinal glioma. J Neurosurg Spine 35:834–843. https://doi.org/10.3171/2021.2.SPINE201675

    Article  PubMed  Google Scholar 

  51. Yi S, Choi S, Shin DA et al (2019) Impact of H3.3 K27M Mutation on Prognosis and Survival of Grade IV Spinal Cord Glioma on the Basis of New 2016 World Health Organization Classification of the Central Nervous System. Neurosurg 84:1072–1081. https://doi.org/10.1093/neuros/nyy150

    Article  Google Scholar 

  52. Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827. https://doi.org/10.1007/s00401-015-1478-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang L, Li Z, Zhang M et al (2018) H3 K27M–mutant diffuse midline gliomas in different anatomical locations. Hum Pathol 78:89–96. https://doi.org/10.1016/j.humpath.2018.04.015

    Article  PubMed  CAS  Google Scholar 

  54. Cheng R, Li D-P, Zhang N et al (2021) Spinal Cord Diffuse Midline Glioma With Histone H3 K27M Mutation in a Pediatric Patient. Front Surg 8:616334. https://doi.org/10.3389/fsurg.2021.616334

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kumar A, Rashid S, Singh S, et al (2019) Spinal Cord Diffuse Midline Glioma in a 4-Year-Old Boy. Child Neurol Open 6:2329048X19842451. https://doi.org/10.1177/2329048X19842451

  56. Vuong HG, Ngo TNM, Le HT, et al (2022) Prognostic Implication of Patient Age in H3K27M-Mutant Midline Gliomas. Frontiers in Oncology 12:

Download references

Acknowledgements

G.W. performed material preparation, data collection, analysis, and writing of the original draft. J.M.W., B.E., and M.F.K. performed data collection, analysis, and manuscript review. C.O. performed material preparation and data collection. G.E.U., A.M., and O.B. performed study supervision and manuscript review. P.P. performed material preparation, supervision, manuscript review, project conception and design. All authors read and approved the final manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Palmisciano.

Ethics declarations

Competing interest

The authors also have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, G., Wong, J.M., Estes, B. et al. Diffuse Midline H3K27-Altered Gliomas in the Spinal Cord: A Systematic Review. J Neurooncol 166, 379–394 (2024). https://doi.org/10.1007/s11060-024-04584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-024-04584-8

Keywords

Navigation