Skip to main content
Log in

Evaluation of the Left Ventricular Myocardium Using Layer-Specific Strain Analysis in Adolescent Athletes Performing High-Intensity Interval Training

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

High-intensity interval training (HIIT) has been demonstrated to be an efficient way of improving physical performance in adolescent athletes compared to conventional training modalities. The objective of this study was to evaluate the impact of HIIT on the myocardial function of adolescent athletes, specifically focusing on left ventricular (LV) function, using conventional echocardiography and layer-specific strain (LSS) analysis. A total of 19 male adolescent athletes (with mean age of 16.83 ± 1.29 years) participating in various football clubs were recruited for this study. During the course of 8 weeks, these adolescent male athletes engaged in HIIT program centered around running. Upon completion of HIIT program, a treadmill exercise test was conducted. Subsequently, conventional and LSS echocardiography were conducted to acquire the evaluation of LV myocardial function. Interventricular septum thickness and ventricular mass index were significantly increased post high-intensity interval training (p < 0.005). After the HIIT, the treadmill exercise test demonstrated a significant increase in test duration and metabolic equivalent compared to the pre-training values (p < 0.005). Post high-intensity interval training, LSS analysis revealed significantly improved LV circumferential strain values in the basal and mid-segments of the left ventricle when compared to the pre-training measurements (p < 0.005). The implementation of high-intensity interval training led to an enhancement of circumferential LSS in the LV, indicating a favorable physiological adaptation and improved efficiency of the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be shared on request to the authors.

References

  1. Norton K, Norton L, Sadgrove D (2010) Position statement on physical activity and exercise intensity terminology. J Sci Med Sport 13:496–502. https://doi.org/10.1016/j.jsams.2009.09.008

    Article  PubMed  Google Scholar 

  2. Kilen A, Larsson TH, Jørgensen M, Johansen L, Jørgensen S, Nordsborg NB (2014) Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PLoS ONE. https://doi.org/10.1371/journal.pone.0095025

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meyer P, Gayda M, Juneau M, Nigam A (2013) High-intensity aerobic interval exercise in chronic heart failure. Curr Heart Fail Rep. https://doi.org/10.1007/s11897-013-0130-3

    Article  PubMed  Google Scholar 

  4. Ellingsen Ø, Halle M, Conraads V, Støylen A, Dalen H, Delagardelle C, Larsen AI, Hole T, Mezzani A, Van Craenenbroeck EM, Videm V, Beckers P, Christle JW, Winzer E, Mangner N, Woitek F, Höllriegel R, Pressler A, Monk-Hansen T, Snoer M, Feiereisen P, Valborgland T, Kjekshus J, Hambrecht R, Gielen S, Karlsen T, Prescott E, Linke A, SMARTEX Heart Failure Study (Study of Myocardial Recovery After Exercise Training in Heart Failure) Group (2017) High-intensity interval training in patients with heart failure with reduced ejection fraction. Circulation 28;135(9):839–849. https://doi.org/10.1161/CIRCULATIONAHA.116.022924

  5. Buchheit M, Laursen PB, Kuhnle J, Ruch D, Renaud C, Ahmaidi S (2009) Game-based training in young elite handball players. Int J Sports Med 30(4):251–258. https://doi.org/10.1055/s-0028-1105943

    Article  CAS  PubMed  Google Scholar 

  6. Tønnessen E, Shalfawi SA, Haugen T, Enoksen E (2011) The effect of 40-m repeated sprint training on maximum sprinting speed, repeated sprint speed endurance, vertical jump, and aerobic capacity in young elite male soccer players. J Strength Cond Res 25(9):2364–2370. https://doi.org/10.1519/JSC.0b013e3182023a65

    Article  PubMed  Google Scholar 

  7. Brosnan MJ, Rakhit D (2018) Differentiating athlete’s heart from cardiomyopathies—the left side. Heart Lung Circ 27(9):1052–1062. https://doi.org/10.1016/j.hlc.2018.04.297

    Article  PubMed  Google Scholar 

  8. Ancedy Y, Ederhy S, Jean ML, Nhan P, Soulat-Dufour L, Adavane-Scheuble S, Chauvet-Droit M, Boccara F, Cohen A (2020) Does layer-specific strain using speckle tracking echocardiography improve the assessment of left ventricular myocardial deformation? A review. Arch Cardiovasc Dis 113(11):721–735. https://doi.org/10.1016/j.acvd.2020.05.007

    Article  PubMed  Google Scholar 

  9. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R, Simons-Morton DA, Williams MA, Bazzarre T (2001) Exercise standards for testing and training: a statement for health care professionals from the American Heart Association. Circulation 104(14):1694–1740. https://doi.org/10.1161/hc3901.095960

    Article  CAS  PubMed  Google Scholar 

  10. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108. https://doi.org/10.1016/j.euje.2005.12.014

    Article  PubMed  Google Scholar 

  11. Maron BJ (1986) Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol 7(1):190–203. https://doi.org/10.1016/s0735-1097(86)80282-0

    Article  CAS  PubMed  Google Scholar 

  12. Pellicia A, Maron B, Spataro A, Proschan MA, Spirito P (1991) The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Eng J Med 324(5):295–301. https://doi.org/10.1056/NEJM199101313240504

    Article  Google Scholar 

  13. Beaumont A, Grace F, Richards J, Hough J, Oxborough D, Sculthorpe N (2017) Left ventricular speckle tracking-derived cardiac strain and cardiac twist mechanics in athletes: a systematic review and meta-analysis of controlled studies. Sports Med 47(6):1145–1170. https://doi.org/10.1007/s40279-016-0644-4

    Article  PubMed  Google Scholar 

  14. Reisner SA, Lysyaskky P, Agmon Y, Mutlak D, Lessick J, Friedman Z (2004) Global longitudinal strain: a novel index of left ventricular function. J Am Soc Echocardiogr 17(6):630–633. https://doi.org/10.1016/j.echo.2004.02.011

    Article  PubMed  Google Scholar 

  15. Shi J, Pan C, Kong D, Cheng L, Shu X (2016) Left ventricular longitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiography 33(4):510–518. https://doi.org/10.1111/echo.13132

    Article  CAS  PubMed  Google Scholar 

  16. Leitman M, Lysiansky M, Lysyansky P, Friedman Z, Tyomkin V, Fuchs T, Adam D, Krakover R, Vered Z (2010) Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr 23(1):64–70. https://doi.org/10.1016/j.echo.2009.10.004

    Article  PubMed  Google Scholar 

  17. Kang Y, Xiao F, Chen H, Wang W, Shen L, Zhao H, Shen X, Chen F, He B (2018) Subclinical anthracycline-induced cardiotoxicity in long-term follow-up of lymphoma survivors: A multi-layer speckle tracking analysis. Arq Bras Cardiol 110(3):219–228. https://doi.org/10.5935/abc.20180042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim SA, Park SM, Kim MN, Shim WJ (2016) Assessment of left ventricular function by layer-specific strain and its relationship to structural remodeling in patients with hypertension. Can J Cardiol 32(2):211–216. https://doi.org/10.1016/j.cjca.2015.04.025

    Article  PubMed  Google Scholar 

  19. Okada K, Yamada S, Iwano H, Nishino H, Nakabachi M, Yokoyama S, Abe A, Ichikawa A, Kaga S, Nishida M, Hayashi T, Murai D, Mikami T, Tsutsui H (2015) Myocardial shortening in 3 orthogonal directions and its transmural variation in patients with nonobstructive hypertrophic cardiomyopathy. Circ J 79(11):2471–2479. https://doi.org/10.1253/circj.CJ-15-0646

    Article  PubMed  Google Scholar 

  20. Yılmaztepe MA, Uçar FM (2018) Layer-specific strain analysis in patients with suspected stable angina pectoris and apparently normal left ventricular function. Cardiovasc Ultrasound 16(1):25. https://doi.org/10.1186/s12947-018-0144-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Caselli S, Montesanti D, Autore C, Di Paolo FM, Pisicchio C, Squeo MR, Musumeci B, Spataro A, Pandian NG, Pelliccia A (2015) Patterns of left ventricular longitudinal strain and strain rate in Olympic athletes. J Am Soc Echocardiogr 28(2):245–253. https://doi.org/10.1016/j.echo.2014.10.010

    Article  PubMed  Google Scholar 

  22. Eun LY, Chae HW (2016) Assessment of myocardial function in elite athlete’s heart at rest- 2D speckle tracking echocardiography in Korean elite soccer players. Sci Rep 6:39772. https://doi.org/10.1038/srep39772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Ascenzi F, Pelliccia A, Alvino F, Solari M, Loffreno A, Cameli M, Focardi M, Bonifazi M, Mondillo S (2015) Effects of training on LV strain in competitive athletes. Heart 101(22):1834–1839. https://doi.org/10.1136/heartjnl-2015-308189

    Article  PubMed  Google Scholar 

  24. Reckefuss N, Butz T, Horstkotte D, Faber L (2011) Evaluation of longitudinal and radial left ventricular function by two-dimensional speckle tracking echocardiography in a large cohort of normal probands. Int J Cardiovasc Imaging 27(4):515–526. https://doi.org/10.1007/s10554-010-9716-y

    Article  PubMed  Google Scholar 

  25. Huang YC, Tsai HH, Fu TC, Hsu CC, Wang J (2019) High-intensity interval training improves left ventricular contractile function. Med Sci Sports Exerc 51(7):1420–1428. https://doi.org/10.1249/MSS.0000000000001931

    Article  PubMed  Google Scholar 

  26. Edwards JJ, Wiles JD, Vadaszy N, Taylor KA, O’Driscoll JM (2022) Left ventricular mechanical, cardiac autonomic and metabolic responses to a single session of high intensity interval training. Eur J Appl Physiol 122(2):383–394. https://doi.org/10.1007/s00421-021-04840-z

    Article  CAS  PubMed  Google Scholar 

  27. O’Driscoll JM, Wright SM, Taylor KA, Coleman DA, Sharma R, Wiles JD (2018) Cardiac autonomic and left ventricular mechanics following high intensity interval training: a randomized crossover-controlled study. J Appl Physiol 125(4):1030–1040. https://doi.org/10.1152/japplphysiol.00056.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan-Dewar F, Oxborough D, Shave R, Gregson W, Whyte G, George K (2010) Left ventricular myocardial strain and strain rates in sub-endocardial and sub-epicardial layers before and after a marathon. Eur J Appl Physiol 109(6):1191–1196. https://doi.org/10.1007/s00421-010-1469-8

    Article  PubMed  Google Scholar 

  29. Sarvari SI, Haugaa KH, Zahid W, Bendz B, Aakhus S, Aaberge L, Edvardsen T (2013) Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc Imaging 6(5):535–544. https://doi.org/10.1016/j.jcmg.2013.01.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.K. The idea and realization of the research S.C. Checked the literature and wrote the main manuscript text D.D. Prepared of the figures, reviewed the manuscript K.B. Fulfilled the echocardiographic part of the manuscript All authors reviewed the manuscript.

Corresponding author

Correspondence to Süha Çetin.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Informed Consent

All participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kösemen, D.S., Çetin, S., Demirci, D. et al. Evaluation of the Left Ventricular Myocardium Using Layer-Specific Strain Analysis in Adolescent Athletes Performing High-Intensity Interval Training. Pediatr Cardiol 45, 770–779 (2024). https://doi.org/10.1007/s00246-024-03411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-024-03411-1

Keywords

Navigation