Skip to main content
Log in

Intermolecular Interactions of Cefotaxime with Sodium Alginate Biopolymer in Aqueous Solutions

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The complexation of cefotaxime with an anionic polysaccharide, sodium alginate, in aqueous solutions with different pH values was studied by conductometry and by UV and IR spectroscopy. The compositions and stability constants of the complexes were determined. At pH 2.0, 5.6, and 7.2, the composition of the complex of cefotaxime with alginate corresponds to the [cefotaxime] : [alginate] molar ratio of 4.0 : 1.0, 2.3 : 1.0, and 1.0 : 1.0, respectively. The cefotaxime–alginate complex is most stable in strongly acidic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Yakovlev, V.P. and Yakovlev, S.V., Ratsional’naya antimikrobnaya farmakoterapiya (Rational Antimicrobial Pharmacotherapy), Moscow: LitTerra, 2007.

    Google Scholar 

  2. Ling, S.S.N., Magosso, E., Khan, N.A.C., Yuen, K.H., and Barker, S.A., Drug. Dev. Ind. Pharm., 2006, vol. 32, no. 3, pp. 335–345. https://doi.org/10.1080/03639040500519102

    Article  CAS  PubMed  Google Scholar 

  3. Patent US 11938638, Publ. 2007.

  4. Golocorbin-Kon, S., Mikov, M., Arafat, M., Lepojevic, Z., Mikov, I., Sahman-Zaimovic, M., and Tomic, Z., Eur. J. Drug Metabol. Pharmacokinet., 2009, vol. 34, pp. 31–36. https://doi.org/10.1007/BF03191381

    Article  CAS  Google Scholar 

  5. Patent US 6248360B1, Publ. 2000.

  6. Patel, N., Lalwani, D., Gollmer, S., Injeti, E., Sari, Y., and Nessamony, J., Prog. Biomater., 2016, vol. 5, no. 2, pp. 117–133. https://pubmed.ncbi.nlm.nih.gov/27525203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dyab, A.K., Mohamed, M.A., Meligi, N.M., and Mohamed, S.K., RSC Аdv., 2018, vol. 8, no. 58, pp. 33432–33444. https://doi.org/10.1039/C8RA05499A

    Article  CAS  ADS  Google Scholar 

  8. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., and Shin, H.S., J. Nanobiotechnol., 2018, vol. 16, no. 1, pp. 1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  9. Kajjari, P.B., Manjeshwar, L.S., and Aminabhavi, T.M., AAPS PharmSciTech, 2012, vol. 13, no. 4, pp. 1147–1157. https://pubmed.ncbi.nlm.nih.gov/22956057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grigor’ev, D., Musabekov, K.B., Musabekov, N.K., and Kusainova, Z.Z., Polym. Sci., Ser. A, 2017, vol. 59, no. 4, pp. 506–514. https://doi.org/10.7868/S2308112017040022

    Article  Google Scholar 

  11. Teng, K., An, Q., Chen, Y., Zhang, Y., and Zhao, Y., ACS Biomater. Sci. Eng., 2021, vol. 7, no. 4, pp. 1302–1337. https://doi.org/10.1021/acsbiomaterials.1c00116

    Article  CAS  PubMed  Google Scholar 

  12. Shilova, S.V., Mirgaleev, G.M., and Barabanov, V.P., Russ. J. Appl. Chem., 2022, vol. 95, no. 3, pp. 401–407. https://doi.org/10.31857/S0044461822030070

    Article  CAS  Google Scholar 

  13. Zhou, N. and He, C.X., Microchim. Acta, 1993, vol. 111, no. 4, pp. 183–191. https://doi.org/10.1007/BF01245305

    Article  CAS  Google Scholar 

  14. El’chishcheva, Yu.B., Spektrofotometricheskie metody analiza: uchebnoe posobie (Spectrophotometric Methods of Analysis: Textbook), Perm: Permskii Gos. Nats. Issled. Univ., 2023, pp. 106–119.

    Google Scholar 

  15. Alekseev, V.G., Vorob’ev, N.V., and Yakubovich, Yu.Ya., Russ. J. Phys. Chem., 2006, vol. 80, no. 9, pp. 1428–1432. https://doi.org/10.1134/S0036024406090123

    Article  CAS  Google Scholar 

  16. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (IR Spectra of the Main Classes of Organic Compounds. Handbook), Moscow: Mosk. Gos. Univ., 2012, pp. 14–27.

    Google Scholar 

  17. Savitskaya, T.A., Ivashkevich, O.A., Shakhno, E.A., and Grinshpan, D.D., Polym. Sci., Ser. A, 2019, vol. 61, no. 3, pp. 274–286. https://doi.org/10.1134/S0965545X1903012X

    Article  CAS  Google Scholar 

  18. Mudarisova, R.Kh., Kulish, E.I., Zinatullin, R.M., Tamindarova, N.E., Kolesov, S.V., Khunafin, S.N., and Monakova, Y.B., Russ. J. Appl. Chem., 2006, vol. 79, no. 7, pp. 1210–1212. https://doi.org/10.1134/S1070427206070354

    Article  CAS  Google Scholar 

  19. Li, Z., Wang, X., Zhang, X., Yang, Y., and Duan, J., Chem. Eng. J., 2021, vol. 413, ID 127494. https://doi.org/10.1016/j.cej.2020.127494

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed using the equipment of the Nanomaterials and Nanotechnologies Center for Shared Use, Kazan National Research University of Technology, and was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 0751520216999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shilova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 350–357, August, 2023 https://doi.org/10.31857/S0044461823040047

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirgaleev, G.M., Shilova, S.V. & Barabanov, V.P. Intermolecular Interactions of Cefotaxime with Sodium Alginate Biopolymer in Aqueous Solutions. Russ J Appl Chem 96, 422–428 (2023). https://doi.org/10.1134/S1070427223040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223040043

Keywords:

Navigation