Skip to main content
Log in

Synthesis and Biological Evaluation of Coumarin-Amino Acid-Benzotriazole Conjugates

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: It is aimed to synthesize new amino acid-conjugated coumarin-benzotriazole molecules and to investigate their acetylcholinesterase, urease, and lipase inhibition properties. Methods: Urease inhibitory activities of new compounds and standard were determined spectrophotometrically according to the method of Van Slykeand Archibald. The lipase activity assay was determined using the method of Bendicho. The acetylcholinesterase enzymatic activity was measured according to the method described by Ingkaninan. Results and Discussion: All synthesized compounds showed effective urease, lipase, and acetylcholinesterase inhibitory activities. Compound (Vd) has the most potent enzyme inhibition activity against urease with an IC50 = 0.038 ± 0.022 μM. Compound (Vc) has the most potent enzyme inhibition activity against lipase with an IC50 = 0.101 ± 0.046 μM. Compound (Ve) has the best inhibitory effect against acetylcholinesterase enzyme with an IC50 = 0.003 ± 0.001 μM. Conclusions: A novel series of coumarin-amino acid-benzotriazole conjugates have been synthesized, and their urease, lipase, and acetylcholinesterase (AChE) inhibitor activities were determined. Most of the tested compounds showed higher urease inhibitory activity IC50 values ranging from 0.038 ± 0.022 to 0.086 ± 0.057 µM than thiourea. Among the series, compound (Vc) proved to be the most potent showing lipase inhibitory activity with an IC50 = 0.101 ± 0.046 μM when compared to the standard inhibitor Orlistat with an IC50 = 0.185 ± 0.075 μM. Compounds (Ve), (VIa), (VId), and (VIe) were found to exhibit potent inhibitory properties against acetylcholinesterase enzyme in the range of IC50 = 0.003 ± 0.001–0.010 ± 0.006 μM when compared to the tacrine as standard (IC50 = 0.029 ± 0.012 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Noh, J.M., Seon-Yeong, K., Seo, H.S., Seo, J.H., Kim, B.G., and Lee, Y.S., Bioorg. Med. Chem. Lett., 2009, vol. 19, pp. 5586–5589. https://doi.org/10.1016/j.bmcl.2009.08.041

    Article  CAS  PubMed  Google Scholar 

  2. Tiwari, A.D., Panda, S.S., Asiri, A.M., and Hall, C.D., Synthesis, 2014, vol. 46, pp. 2430–2435. https://doi.org/10.1055/s-0033-1340193

    Article  CAS  Google Scholar 

  3. Verma, S.K., Verma, R., Rakesh, K.P., and Gowda, D.C., Eur. J. Med. Chem. Rep., 2022, vol. 6, Article ID: 100087. https://doi.org/10.1016/j.ejmcr.2022.100087

  4. Wang, M., Rakesh, K.P., Leng, J., Fang, W.Y., Ravindar, L., Gowda, D.C., and Qin, H.L., Bioorg. Chem., 2018, vol. 76, pp. 113–129. https://doi.org/10.1016/j.bioorg.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  5. Küçükbay, F.Z., Küçükbay, H. Tanc, M., and Supuran, C.T., J. Enzyme Inhibit. Med. Chem., 2016, vol. 31, pp. 1476–1483. https://doi.org/10.3109/14756366.2016.1147438

    Article  CAS  Google Scholar 

  6. Kannuri, R., Manturthi, S., and Velidandi, A.N., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 993–999. https://doi.org/10.1134/S1068162023050060

    Article  CAS  Google Scholar 

  7. Küçükbay, F.Z., Küçükbay, H. Tanc, M., and Supuran, C.T., J. Enzyme Inhibit. Med. Chem., 2016, vol. 31, pp. 1198–1202. https://doi.org/10.3109/14756366.2015.1113173

    Article  CAS  Google Scholar 

  8. Yıldırım, M., Ersatır, M., Yalın, S., and Giray, E.S., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 970–975. https://doi.org/10.1134/S1068

    Article  Google Scholar 

  9. Ersatir, M., Yildirim, M., Giray, E.S., and Yalin, S., Monatsh. Chem., 2020, vol. 151, pp. 625–636. https://doi.org/10.1007/s00706-020-02573-x

    Article  CAS  Google Scholar 

  10. Rajeswari, K., Manturthi, S., Sirisha, K., and Velidandi, A., Russ. J. Bioorg. Chem., 2022, vol.48, pp. 636–642. https://doi.org/10.1134/S1068162022030153

    Article  CAS  Google Scholar 

  11. Rajeswari, K., Manturthi, S., and Velidandi, A., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 993–999. https://doi.org/10.1134/S1068162023050060

    Article  Google Scholar 

  12. Bollikolla, H.B., Boddapati, S.N.M.,Thangamani, S., Mutchu, B.R., Alam, M.M., Hussien, M., and Jonnalagadda, S.B., J. Heterocycl. Chem., 2023, vol. 60, pp. 705–742. https://doi.org/10.1002/jhet.4587

    Article  CAS  Google Scholar 

  13. Kale, R.R., Prasad, V., Mohapatra, P.P., and Tiwari, V.K., Monatsh. Chem., 2020, vol. 141, pp. 1159–1182. https://doi.org/10.1007/s00706-010-0378-1

    Article  CAS  Google Scholar 

  14. Abudalo, R.A., Abudalo, M.A., and Hernandez, M.T., IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 305, Article ID: 012024. https://doi.org/10.1088/1757-899X/305/1/012024

  15. Das, J., Rao, C.V.L., Sastry, T.V.R.S., Roshaiah, M., Gowri Sankar, P., Khadeer, A., Sitaram Kumar, M., Mallik, A., Selvakumar, N., Iqbal, J., and Trehan, S., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 337–343. https://doi.org/10.1016/j.bmcl.2004.10.073

    Article  CAS  PubMed  Google Scholar 

  16. Augustynowicz-Kopec, E., Zwolska, Z., Orzesko, A., and Kazimierczuk, Z., Acta Pol. Pharm., 2008, vol. 65, pp. 435–439. PMID: 19051584

    CAS  PubMed  Google Scholar 

  17. Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N., and Gholami, S., Arch. Pharm. Chem. Life Sci., 2011, vol. 344, pp. 658–665. https://doi.org/10.1002/ardp.201000357

    Article  CAS  Google Scholar 

  18. Ambekar, S.P. and Mohan, C.D., Lett. Org. Chem., 2018, vol. 15, pp. 23–31. https://doi.org/10.2174/1570178614666170710125501

    Article  CAS  Google Scholar 

  19. Yu, T., Zhang, P., Zhao, Y., Zhang, H., Fan, D., Dong, W., and Ding, L., Phosphor. Sulfur Silic., 2009, vol. 184, pp. 2655–2663. https://doi.org/10.1080/10426500802561153

    Article  CAS  Google Scholar 

  20. Singh, A., Sharma, S., Saroj. A., Attri, S., Kaur, P., Gulati, H.K., Bhagat, K., Kumar, N., Singh, H., Singh, J.V., and Bedi, P.M.S., Bioorg. Med. Chem. Lett., 2020, vol. 30, Article ID: 127477. https://doi.org/10.1016/j.bmcl.2020.127477

  21. Husain, A., Baluski, A., Akthar, J., and Khan, S.A., J. Mol. Struct., 2021, vol. 1241, Article ID: 130618. https://doi.org/10.1016/j.molstruc.2021.130618

  22. He, Q., Liu, J., Lan, J.S., Ding, J., Sun, Y., Fang, Y., Jiang, N., Yang, Z., Sun, L., Jin, Y., and Xie, S.-S., Bioorg. Chem., 2018, vol. 81, pp. 512–528. https://doi.org/10.1016/j.bioorg.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  23. Katritzky, A.R., Narindoshvili, T., and Angrish, P., Synthesis, 2008, vol. 13, pp. 2013–2022. https://doi.org/10.1055/s-2008-1067078

    Article  CAS  Google Scholar 

  24. Tiwari, N., Kumari, A., Uttam, G., Singh, V., Singh, K., and Katiyar, D.,ChemistrySelect, 2022, vol. 7, Article ID: e202201299. https://doi.org/10.1002/slct.202201299

  25. Kahveci, B., Yılmaz, F., Menteşe, E., and Ülker, S., Chem. Heterocycl. Comp., 2015, vol. 51, pp. 447–456. https://doi.org/10.1007/s10593-015-1714-5

    Article  CAS  Google Scholar 

  26. García, S., Mercado-Sánchez, I., Bahena, L., Alcaraz, Y., García-Revilla, M.A., Robles, J., Santos-Martínez, N., Ordaz-Rosado, D., García-Becerra, R., and Vazquez, M.A., Molecules, 2020, vol. 25, Article ID: 5134. https://doi.org/10.3390/molecules25215134

  27. Areias, F., Costa, M.Castro, Brea, J., Gregori-Puigjané, E., Proença, M.F., Mestres, J., and Loza, M.I., Eur. J. Med. Chem., 2012, vol. 54, pp. 303–310. https://doi.org/10.1016/j.ejmech.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  28. Shah, S., Desai, D., and Mehta, R.H., J. Indian Chem. Soc., 1999, vol. 76, pp. 507–508. https://doi.org/10.1002/chin.200039126

    Article  CAS  Google Scholar 

  29. Van Slyke, D. and Archibald, R.M., J. Biol. Chem., 1944, vol. 154, pp. 623–642.

    Article  CAS  Google Scholar 

  30. Bendicho, S., Trigueros, M.C., Hernàndez, T., and Martìn, O., J. Dairy Sci., 2001, vol. 84, pp. 1590–1596. https://doi.org/10.3168/jds.S0022-0302(02)74048-4

    Article  CAS  PubMed  Google Scholar 

  31. Ingkaninan, K., Temkitthawon, P., Chuechon, K., Yuyaem, T., Thongnoi, W., J. Ethnopharmacol., 2003, vol. 89, pp. 261–264. https://doi.org/10.1016/j.jep.2003.08.008

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Author EM designed the experiments; authors EM and NÇ synthesized the samples. Authors EM and GA carried out studies using NMR spectroscopy. Authors BBS and GA made enzyme inhibition studies. Authors EM and GA contributed to manuscript preparation. All authors participated in the discussions.

Corresponding author

Correspondence to Emre MenteÅŸe.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menteşe, E., Çalışkan, N., Sökmen, B.B. et al. Synthesis and Biological Evaluation of Coumarin-Amino Acid-Benzotriazole Conjugates. Russ J Bioorg Chem 50, 191–200 (2024). https://doi.org/10.1134/S1068162024010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010126

Keywords:

Navigation