Skip to main content
Log in

Influence of the pressure of a propane-butane mixture on the morphology of carbon nanomaterial formed in an arc discharge

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The morphology of carbon material formed in an arc discharge in a mixture of i-butane, n-butane, and propane when spraying a graphite-nickel electrode was studied. The experiments were carried out with changing the gas medium pressure. Carbon globules, graphene structures, and carbon nanotubes have been discovered. It was found that at pressures of 75 and 400 torr, carbon globules predominate in the resulting materials. At gas pressures of 200 torr, the material collected from the cold screen surface contains both graphene-like structures and significant amounts of carbon nanotubes. The physical reasons influencing the observed phenomena are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Kratschmer, L.D. Lamb, and K. Fostiropoulos, Solid C60: a new form of carbon, Nature, 1990, Vol. 347, No. 6291, P. 354–358.

    Article  ADS  Google Scholar 

  2. J.H.J. Scott and S.A. Majetich, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev. B, 1995, Vol. 52, No. 17, P. 12564–12571.

    Article  CAS  ADS  Google Scholar 

  3. S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, Vol. 354, No. 6348, P. 56–58.

    Article  CAS  ADS  Google Scholar 

  4. N. Arora and N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond and Related Materials, 2014, Vol. 50, P. 135–150.

    Article  CAS  ADS  Google Scholar 

  5. K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C, 2009, Vol. 13, No. 11, P. 4257–4259.

    Article  Google Scholar 

  6. D.V. Smovzh, I.A. Kostogrud, S.Z. Sakhapov, A.V. Zaikovskii, and S.A. Novopashin, The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode, Carbon, 2017, Vol. 112, P. 97–102.

    Article  CAS  Google Scholar 

  7. A.V. Zaikovskii, T.Y. Kardash, B.A. Kolesov, and O.A. Nikolaeva, Graphene, SiC and Si nanostructures synthesis during quartz pyrolysis in arc-discharge plasma, Phys. Stat. Sol. A, 2019, Vol. 216, No. 14, P. 1900079-1–1900079-8.

    ADS  Google Scholar 

  8. A.V. Zaikovskii and S.A. Novopashin, Electroconductive and magnetic properties of pure carbon soot produced in arc discharge: Regimes of various buffer gas pressure, Phys. Stat. Sol. A, 2017, Vol. 2014, No. 10, P. 1700142-1–1700142-6.

    Google Scholar 

  9. N. Li, Zh. Wang, K. Zhao, Zu. Shi, Zh. Gu, and Sh. Xu, Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism, Carbon, 2010, Vol. 48, No. 5, P. 1580–1585.

    Article  CAS  Google Scholar 

  10. Y. Shen and A.C. Lua, Synthesis of Ni and Ni-Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane, Appl. Catal. B, 2015, Vol. 164, P. 61–69.

    Article  CAS  Google Scholar 

  11. A. Zaikovskii, S. Novopashin, V. Maltsev, T. Kardash, and I. Shundrina, Tin–carbon nanomaterial formation in a helium atmosphere during arc-discharge, RSC Adv., 2019, Vol. 9, P. 36621–36630.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. D.V. Smovzh, S.Z. Sakhapov, A.V. Zaikovskii, and S.A. Novopashin, Morphology of aluminium oxide nanostructures after calcinations of arc discharge Al-C soot, Ceram. Inter., 2015, Vol. 41, P. 8814–8819.

    Article  CAS  Google Scholar 

  13. D.V. Smovzh, S.Z. Sakhapov, A.V. Zaikovskii, E.V. Boyko, and O.A. Solnyshkina, Arc discharge sputtering model of Mg–Al–C anode for the nanoceramics production, Vacuum, 2022, Vol. 196, P. 110802-1–110802-8.

    Article  ADS  Google Scholar 

  14. A. Zaikovskii, I. Yudin, D. Kozlachkov, A. Nartova, and E. Fedorovskaya, Gas pressure control of electric arc synthesis of composite Sn–SnO2–C nanomaterials, Vacuum, 2022, Vol. 195, P. 110694-1–110694-9.

    Article  ADS  Google Scholar 

  15. A.V. Zaikovskii, A.A. Iurchenkova, D.V. Kozlachkov, and E.O. Fedorovskaya, Effects of tin on the morphological and electrochemical properties of arc-discharge nanomaterials, JOM, 2021, Vol. 73, No. 3, P. 847–855.

    Article  CAS  ADS  Google Scholar 

  16. A. Zaikovskii, A. Ukhina, and Yu. Mateyshina, Electric arc synthesis of composite Ni–C, Nio–C nanomaterials: structure and electrochemical properties, Phys. Stat. Sol. A, 2022. Vol. 219, No. 14, P. 2200111-1–2200111-6.

    ADS  Google Scholar 

  17. T.D. Makris, L. Giorgi, R. Giorgi, N. Lisi, and E. Salernitano, CNT growth on alumina supported nickel catalyst by thermal CVD, Diam. Relat. Mater., 2005, Vol. 14, No. 3, P. 815–819.

    Article  ADS  Google Scholar 

  18. A. Dahal and M. Batzill, Graphene-nickel interfaces: a review, Nanoscale, 2014, Vol. 6, P. 2548–2562.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, K. Sumoyama, K. Suzuki, A. Kasuya, and Y. Niahina, Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method, J. Appl. Phys. 1994, Vol. 75, P. 134–137.

    Article  CAS  ADS  Google Scholar 

  20. S. Chaturvedi and P.N. Dave, Design process for nanomaterials, J. Mater. Sci., 2013, Vol. 48, P. 3605–3622.

    Article  CAS  ADS  Google Scholar 

  21. C. Laurent, E. Flahaut, A. Peigney, and A. Rousset, Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 1998, Vol. 22, P. 1229–1237.

    Article  CAS  Google Scholar 

  22. F. Ding and K. Bolton, The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation, Nanotechnology, 2006, Vol. 17, P. 543–548.

    Article  CAS  ADS  Google Scholar 

  23. W. Zhou, L. Ding, and J. Liu, Role of catalysts in the surface synthesis of single-walled carbon nanotubes, Nano Res., 2009, Vol. 2, P. 593–598.

    Article  CAS  Google Scholar 

  24. S.P. Doherty, D.B. Buchholz, B.-J. Li, and R.P.H. Chang, Solid-state synthesis of multiwalled carbon nano-tubes, J. Mater. Res., 2012, Vol. 18, No. 4, P. 941–949.

    Article  ADS  Google Scholar 

  25. J. Qiu, Z. Wang, Z. Zhao, and T. Wang, Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere, Fuel, 2007, Vol. 86, P. 282–286.

    Article  CAS  Google Scholar 

  26. T. Okada, T. Kaneko, and R. Hatakeyama, Conversion of toluene into carbon nanotubes using arc discharge plasmas in solution, Thin Solid Films, 2007, Vol. 515, No. 9, P. 4262–4265.

    Article  CAS  ADS  Google Scholar 

  27. Y.-H. Wang, S.-C. Chiu, K.-M. Lin, and Y.-Y. Li, Formation of carbon nanotubes from polyvinyl alcohol using arc-discharge method, Carbon, N. Y., 2004, Vol. 42, P. 2535–2541.

    Article  CAS  Google Scholar 

  28. J. Kong, A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett., 1998, Vol. 292, P. 567–574.

    Article  CAS  ADS  Google Scholar 

  29. A. Hussain, Y. Liao, Q. Zhang, E.X. Ding, P. Laiho, S. Ahmad, N. Wei, Y. Tian, H. Jianga, and E.I. Kauppinen, Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes, Nanoscale, 2018, Vol. 10, P. 9752–9759.

    Article  CAS  PubMed  Google Scholar 

  30. J.J. Bang, P.A. Guerrero, D.A. Lopez, L.E. Murr, and E.V. Esquivel, Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams, J. Nanosci. and Nanotechnol., 2004, Vol. 4, P. 716–718.

    Article  CAS  Google Scholar 

  31. T. Zhao, Gas and pressure effects on the synthesis of amorphous carbon nanotubes, Chin. Sci. Bull., 2004, Vol. 49, No. 24, P. 2569–2571.

    Article  CAS  Google Scholar 

  32. M. Kola and B. Padya, Role of buffer gas pressure on the synthesis of carbon nanotubes by arc discharge method, AIP Conf. Proceedings, 2013, Vol. 1538. P. 200–204.

    ADS  Google Scholar 

  33. J. Zhao, J. Zhang, Y. Su, Z. Yang, L. Wei, and Y. Zhang, Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties, J. Mater. Sci., 2012, Vol. 47, No. 18, P. 6535–6541.

    Article  CAS  ADS  Google Scholar 

  34. Y. Su, P. Zhou, J. Zhao, Z. Yang, and Y. Zhang, Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air, Mater. Res. Bull., 2013, Vol. 48, No. 9, P. 3232–3235.

    Article  CAS  Google Scholar 

  35. H.H. Kim and H.J. Kim, Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere, Mater. Sci. Engng B, 2006, Vol. 133, P. 241–244.

    Article  CAS  Google Scholar 

  36. A.V. Zaikovskii, D.V. Smovzh, S.Z. Sakhapov, and A.V. Fedoseev, Morphological and structural features of materials formed in carbon plasma of arc discharge, J. Phys.: Conf. Ser., 2018, Vol. 1105, P. 012135-1–012135-7.

    Google Scholar 

  37. Z. Jia, K. Kou, M. Qin, H. Wu, F. Puleo, and L.F. Liotta, Controllable and Large-Scale Synthesis of Carbon Nanostructures: A Review on Bamboo-Like Nanotubes, Catalysts, 2017, Vol. 7, No. 9, P. 256-1–256-21.

    Article  Google Scholar 

  38. S. Gordon and B.J. McBride, Computer program for calculation of complex chemical equilibrium compositions and applications, NASA Reference Publication 1311, 1994, P. 1–58.

    Google Scholar 

  39. B.B. Bokhonov, A.V. Ukhina, D.V. Dudina, H. Katsui, T. Goto, and H. Kato, Multiwalled carbon nanotube forests grown on the surface of synthetic diamond crystals, Ceram. Inter., 2017, Vol. 43, P. 10606–10609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Morozova.

Additional information

The authors are grateful to Prof. Boris Alekseevich Kolesov for the assistance in Raman spectroscopy. The authors also thank the CCU VTAN NSU for conducting research using transmission electron microscopy.

The study was financially supported by the Russian Science Foundation (Grant No. 22-79-00139, https://rscf.ru/project/22-79-00139). The work was carried out using the equipment of the USI VGC IT SB RAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, M.A., Ukhina, A.V. & Zaikovskii, A.V. Influence of the pressure of a propane-butane mixture on the morphology of carbon nanomaterial formed in an arc discharge. Thermophys. Aeromech. 30, 917–924 (2023). https://doi.org/10.1134/S0869864323050098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864323050098

Keywords

Navigation