Skip to main content
Log in

Tangential contact stiffness modeling between fractal rough surfaces with experimental validation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The tangential contact stiffness of joint interface is investigated in this work, using both theoretical and experimental methods. Firstly, the contact characteristics of a single asperity are analyzed on the basis of the fractal theory. Second, the total normal load and tangential stiffness of multiple asperities on the contact area are obtained by the integral over the entire surfaces. Besides, the effects of influential factors, including fractal dimension, fractal roughness, material property, friction coefficient, and load ratio, are comprehensively evaluated and discussed. Furthermore, in order to verify the effectiveness of the proposed model, two groups of test specimens are machined from different material types (45#steel and 20CrMnTi), and their actual surface profiles are measured. The structure function method is adopted to determine each profile’s fractal parameters. Under different normal load conditions, the experimental results of tangential contact stiffness on the rough surface between the upper and lower specimen are processed and obtained. By comparing the numerical results with experimental data, it is concluded that the proposed model has higher prediction accuracy on tangential contact stiffness than the comparison model. The establishment of the model not only provides a new theoretical supplement to the contact mechanics research, but also lays the foundation for the subsequent dynamic analysis of interfacial behavior on the combined structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schwingshackl, C.W., Di Maio, D., Sever, I., Green, J.S.: Modeling and validation of the nonlinear dynamic behavior of bolted flange joints. J. Eng. Gas Turbines Power 135(12), 122504 (2013)

    Article  Google Scholar 

  2. Chang, Y., Ding, J., Fan, H., Ding, Y., Lu, H., Chen, Y., et al.: A hybrid method for bolted joint modeling considering multi-scale contact mechanics. Precis. Eng. 78, 171–188 (2022)

    Article  Google Scholar 

  3. Zhao, Z., Han, H., Wang, P., Ma, H., Zhang, S., Yang, Y.: An improved model for meshing characteristics analysis of spur gears considering fractal surface contact and friction. Mech. Mach. Theory 158, 104219 (2021)

    Article  Google Scholar 

  4. Xie, W., Liu, C., Huang, G., Jiang, D.: Numerical and experimental study on rod-fastened rotor dynamics using semi-analytical elastic-plastic model. J. Eng. Gas Turbines Power 144(6), 064501 (2022)

    Article  Google Scholar 

  5. Xie, W., Liu, C., Jiang, D., Jin, J.: Inelastic contact behaviors of nanosized single-asperity and multi-asperity on α-Fe surface: molecular dynamic simulations. Int. J. Mech. Sci. 204, 106569 (2021)

    Article  Google Scholar 

  6. Pan, W., Li, X., Wang, L., Guo, N., Yang, Z.: Influence of contact stiffness of joint surfaces on oscillation system based on the fractal theory. Arch. Appl. Mech. 88, 525–541 (2018)

    Article  ADS  Google Scholar 

  7. Hanaor, D.A., Gan, Y., Einav, I.: Static friction at fractal interfaces. Tribol. Int. 93, 229–238 (2016)

    Article  CAS  Google Scholar 

  8. Xie, W., Jiang, D., Jin, J., Liu, C.: Single-asperity failure mechanism driven by morphology and multiaxial loading using molecular dynamics simulation. Comput. Mater. Sci. 213, 111671 (2022)

    Article  Google Scholar 

  9. Xie, W., Liu, C., Huang, G., Jiang, D., Jin, J.: Nano-sized single-asperity friction behavior: insight from molecular dynamics simulations. Eur. J. Mech. A. Solids 96, 104760 (2022)

    Article  ADS  Google Scholar 

  10. Xie, W., Liu, C., Huang, G., Qin, Z., Zong, K., Jiang, D.: Trans-scale rough surface contact model based on molecular dynamics method: Simulation, modeling and experimental verification. Eur. J. Mech. A. Solids 100, 105021 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  11. Greenwood, J.A., Williamson, J.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295(1442), 300–319 (1966)

    Article  ADS  CAS  Google Scholar 

  12. Whitehouse, D.J., Archard, J.: The properties of random surfaces of significance in their contact. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 316(1524), 97–121 (1970)

    ADS  Google Scholar 

  13. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. 109(2), 257–263 (1987)

    Article  Google Scholar 

  14. Liu, Z., Neville, A., Reuben, R.L.: An analytical solution for elastic and elastic-plastic contact models. Tribol. Trans. 43(4), 627–634 (2000)

    Article  CAS  Google Scholar 

  15. Sayles, R.S., Thomas, T.R.: Surface topography as a nonstationary random process. Nature 271(5644), 431–434 (1978)

    Article  ADS  Google Scholar 

  16. Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)

    Article  Google Scholar 

  17. Wang, S., Komvopoulos, K.: A fractal theory of the interfacial temperature distribution in the slow sliding regime: part I-elastic contact and heat transfer analysis. J. Tribol. 116(4), 812–822 (1994)

    Article  Google Scholar 

  18. Morag, Y., Etsion, I.: Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear 262(5–6), 624–629 (2007)

    Article  CAS  Google Scholar 

  19. Pohrt, R., Popov, V.L., Filippov, A.E.: Normal contact stiffness of elastic solids with fractal rough surfaces for one-and three-dimensional systems. Phys. Rev. E 86(2), 026710 (2012)

    Article  ADS  Google Scholar 

  20. Wang, R., Zhu, L., Zhu, C.: Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction. Int. J. Mech. Sci. 134, 357–369 (2017)

    Article  Google Scholar 

  21. Jana, T., Mitra, A., Sahoo, P.: Dynamic contact interactions of fractal surfaces. Appl. Surf. Sci. 392, 872–882 (2017)

    Article  ADS  CAS  Google Scholar 

  22. Zhang, D., Xia, Y., Scarpa, F., Hong, J., Ma, Y.: Interfacial contact stiffness of fractal rough surfaces. Sci. Rep. 7(1), 1–9 (2017)

    ADS  Google Scholar 

  23. Chen, J., Liu, D., Wang, C., Zhang, W., Zhu, L.: A fractal contact model of rough surfaces considering detailed multi-scale effects. Tribol. Int. 176, 107920 (2022)

    Article  Google Scholar 

  24. Liu, P., Zhao, H., Huang, K., Chen, Q.: Research on normal contact stiffness of rough surface considering friction based on fractal theory. Appl. Surf. Sci. 349, 43–48 (2015)

    Article  CAS  Google Scholar 

  25. Li, X., Liang, Y., Zhao, G., Ju, X., Yang, H.: Dynamic characteristics of joint surface considering friction and vibration factors based on fractal theory. J. Vibroeng. 15(2), 872–883 (2013)

    Google Scholar 

  26. Wang, Y., Zhang, X., Wen, S., Chen, Y.: Fractal loading model of the joint interface considering strain hardening of materials. Adv. Mater. Sci. Eng. 2019, 2108162 (2019)

    Google Scholar 

  27. Cohen, D., Kligerman, Y., Etsion, I.: A model for contact and static friction of nominally flat rough surfaces under full stick contact condition. J. Tribol. 130(3), 117–139 (2008)

    Article  Google Scholar 

  28. Jamshidi, H., Ahmadian, H.: A modified rough interface model considering shear and normal elastic deformation couplings. Int. J. Solids Struct. 203, 57–72 (2020)

    Article  Google Scholar 

  29. Komvopoulos, K.: A multiscale theoretical analysis of the mechanical, thermal, and electrical characteristics of rough contact interfaces demonstrating fractal behavior. Front. Mech. Eng. 6, 36 (2020)

    Article  Google Scholar 

  30. Raffa, M.L., Lebon, F., Vairo, G.: Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model. Int. J. Solids Struct. 87, 245–253 (2016)

    Article  Google Scholar 

  31. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16(3), 259–268 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol. 125(3), 499–506 (2003)

    Article  Google Scholar 

  33. Brizmer, V., Kligerman, Y., Etsion, I.: Elastic-plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett. 25, 61–70 (2007)

    Article  Google Scholar 

  34. Zolotarevskiy, V., Kligerman, Y., Etsion, I.: The evolution of static friction for elastic-plastic spherical contact in pre-sliding. J. Tribol. 133(3), 034502 (2011)

    Article  Google Scholar 

  35. Shi, X., Wu, A., Zhu, C., Qu, S.: Effects of load configuration on partial slip contact between an elastic-plastic sphere and a rigid flat. Tribol. Int. 61, 120–128 (2013)

    Article  Google Scholar 

  36. Jiang, S., Zheng, Y., Zhu, H.: A contact stiffness model of machined plane joint based on fractal theory. J. Tribol. 132(1), 1–7 (2010)

    Article  Google Scholar 

  37. Guan, D., Jing, L., Hilton, H.H., Gong, J., Yang, Z.: Tangential contact analysis of spherical pump based on fractal theory. Tribol. Int. 119, 531–538 (2018)

    Article  Google Scholar 

  38. Chen, Q., Huang, K., Zhao, H., Zhang, Y.: Simulation and analysis of the model of calculating contact tangential stiffness between cylinders’ joint interfaces by MATLAB. Appl. Mech. Mater. 190, 177–181 (2012)

    Article  ADS  Google Scholar 

  39. Shi, J., Cao, X., Zhu, H.: Tangential contact stiffness of rough cylindrical faying surfaces based on the fractal theory. J. Tribol. 136(4), 041401 (2014)

    Article  Google Scholar 

  40. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002)

    Article  ADS  Google Scholar 

  41. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  42. Courtney-Pratt, J., Eisner, E.: The effect of a tangential force on the contact of metallic bodies. Proc. R. Soc. Lond. A 238(1215), 529–550 (1957)

    Article  ADS  Google Scholar 

  43. Etsion, I., Levinson, O., Halperin, G., Varenberg, M.: Experimental investigation of the elastic-plastic contact area and static friction of a sphere on flat. J. Tribol. 127(1), 47–50 (2005)

    Article  Google Scholar 

  44. Chen, Q., Xu, F., Liu, P., Fan, H.: Research on fractal model of normal contact stiffness between two spheroidal joint surfaces considering friction factor. Tribol. Int. 97, 253–264 (2016)

    Article  Google Scholar 

  45. Chen, Z., Liu, Y., Zhou, P.: A comparative study of fractal dimension calculation methods for rough surface profiles. Chaos Solitons Fractals 112, 24–30 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Major Project (2017-IV-0010-0047), Science Center for Gas Turbine Project (P2022-C-I-002-001)

Author information

Authors and Affiliations

Authors

Contributions

Gancai Huang conducted the theoretical research and wrote the main manuscript text. Wenzhen Xie established the test rig and prepared figures 9-10. Chao Liu and Dongxiang Jiang provided experimental support and reviewed the manuscript.

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Liu, C., Xie, W. et al. Tangential contact stiffness modeling between fractal rough surfaces with experimental validation. Arch Appl Mech 94, 719–736 (2024). https://doi.org/10.1007/s00419-024-02547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02547-z

Keywords

Navigation