Skip to main content
Log in

Immunology of SARS-CoV-2 Infection

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

According to the data from the World Health Organization, about 800 million of the world population had contracted coronavirus infection caused by SARS-CoV-2 by mid-2023. Properties of this virus have allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. Severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses, while SARS-CoV-2 evades the immune system actions. In this review, we discuss immune responses triggered in response to the SARS-CoV-2 virus entry into the cell and malfunctions of the immune system that lead to the development of severe disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

ACE2:

angiotensin-converting enzyme 2

APC:

antigen-presenting immune cells

EPR:

endoplasmic reticulum

IFN:

interferon

MHC:

major histocompatibility complex

SARS-CoV-2:

severe acute respiratory syndrome coronavirus 2

CRS:

cytokine release syndrome

References

  1. Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G., and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 203, 631-637, https://doi.org/10.1002/path.1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson, C. B., Farzan, M., Chen, B., and Choe, H. (2022) Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23, 3-20, https://doi.org/10.1038/s41580-021-00418-x.

    Article  CAS  PubMed  Google Scholar 

  3. Bohan, D., Van Ert, H., Ruggio, N., Rogers, K. J., Badreddine, M., Aguilar Briseno, J. A., Elliff, J. M., Rojas Chavez, R. A., Gao, B., Stokowy, T., Christakou, E., Kursula, P., Micklem, D., Gausdal, G., Haim, H., Minna, J., Lorens, J. B., and Maury, W. (2021) Phosphatidylserine receptors enhance SARS-CoV-2 infection, PLoS Pathog., 17, e1009743, https://doi.org/10.1371/journal.ppat.1009743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knyazev, E., Nersisyan, S., and Tonevitsky, A. (2021) Endocytosis and transcytosis of SARS-CoV-2 across the intestinal epithelium and other tissue barriers, Front. Immunol., 12, 636966, https://doi.org/10.3389/fimmu.2021.636966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sefik, E., Qu, R., Junqueira, C., Kaffe, E., Mirza, H., Zhao, J., Brewer, J. R., Han, A., Steach, H. R., Israelow, B., Blackburn, H. N., Velazquez, S. E., Chen, Y. G., Halene, S., Iwasaki, A., Meffre, E., Nussenzweig, M., Lieberman, J., Wilen, C. B., Kluger, Y., et al. (2022) Inflammasome activation in infected macrophages drives COVID-19 pathology, Nature, 606, 585-593, https://doi.org/10.1038/s41586-022-04802-1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Lee, W. S., Wheatley, A. K., Kent, S. J., and DeKosky, B. J. (2020) Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies, Nat. Microbiol., 5, 1185-1191, https://doi.org/10.1038/s41564-020-00789-5.

    Article  CAS  PubMed  Google Scholar 

  7. Koch, J., Uckeley, Z. M., Doldan, P., Stanifer, M., Boulant, S., and Lozach, P. Y. (2021) TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells, EMBO J., 40, e107821, https://doi.org/10.15252/embj.2021107821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Healy, E. F. (2022) How tetraspanin-mediated cell entry of SARS-CoV-2 can dysregulate the shedding of the ACE2 receptor by ADAM17, Biochem. Biophys. Res. Commun., 593, 52-56, https://doi.org/10.1016/j.bbrc.2022.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hantak, M. P., Qing, E., Earnest, J. T., and Gallagher, T. (2019) Tetraspanins: architects of viral entry and exit platforms, J. Virol., 93, https://doi.org/10.1128/JVI.01429-17.

    Article  PubMed  PubMed Central  Google Scholar 

  10. New, C., Lee, Z. Y., Tan, K. S., Wong, A. H., Wang, Y., and Tran, T. (2021) Tetraspanins: host factors in viral infections, Int. J. Mol. Sci., 22, 11609, https://doi.org/10.3390/ijms222111609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luan, B., Huynh, T., Cheng, X., Lan, G., and Wang, H. R. (2020) Targeting proteases for treating COVID-19, J. Proteome Res., 19, 4316-4326, https://doi.org/10.1021/acs.jproteome.0c00430.

    Article  CAS  PubMed  Google Scholar 

  12. Bollavaram, K., Leeman, T. H., Lee, M. W., Kulkarni, A., Upshaw, S. G., Yang, J., Song, H., and Platt, M. O. (2021) Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V, Protein Sci., 30, 1131-1143, https://doi.org/10.1002/pro.4073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mustafa, Z., Kalbacher, H., and Burster, T. (2022) Occurrence of a novel cleavage site for cathepsin G adjacent to the polybasic sequence within the proteolytically sensitive activation loop of the SARS-CoV-2 Omicron variant: the amino acid substitution N679K and P681H of the spike protein, PLoS One, 17, e0264723, https://doi.org/10.1371/journal.pone.0264723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, S., Zheng, X., Zhou, B., Li, J., Chen, M., Deng, R., Wong, G., Lavillette, D., and Meng, G. (2022) SARS-CoV-2 spike engagement of ACE2 primes S2′ site cleavage and fusion initiation, Proc. Natl. Acad. Sci. USA, 119, e2111199119, https://doi.org/10.1073/pnas.2111199119.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, M. H., Krieger, J. M., Banerjee, A., Xiang, Y., Kaynak, B., Shi, Y., Arditi, M., and Bahar, I. (2022) Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions, iScience, 25, 103939, https://doi.org/10.1016/j.isci.2022.103939.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Rajah, M. M., Bernier, A., Buchrieser, J., and Schwartz, O. (2022) The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation, J. Mol. Biol., 434, 167280, https://doi.org/10.1016/j.jmb.2021.167280.

    Article  CAS  PubMed  Google Scholar 

  17. Bottcher-Friebertshauser, E., Klenk, H. D., and Garten, W. (2013) Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium, Pathog. Dis., 69, 87-100, https://doi.org/10.1111/2049-632X.12053.

    Article  CAS  PubMed  Google Scholar 

  18. Seidah, N. G., Pasquato, A., and Andreo, U. (2021) How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses, 13, 1229, https://doi.org/10.3390/v13071229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Q., Liu, Y., and Zhang, L. (2022) Cytoplasmic tail determines the membrane trafficking and localization of SARS-CoV-2 spike protein, Front. Mol. Biosci., 9, 1004036, https://doi.org/10.3389/fmolb.2022.1004036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., and Wang, H. (2020) The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens, Front. Immunol., 11, 576622, https://doi.org/10.3389/fimmu.2020.576622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Z., Zheng, Y., Niu, Z., Zhang, B., Wang, C., Yao, X., Peng, H., Franca, D. N., Wang, Y., Zhu, Y., Su, Y., Tang, M., Jiang, X., Ren, H., He, M., Wang, Y., Gao, L., Zhao, P., Shi, H., Chen, Z., et al. (2021) SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death Differ., 28, 2765-2777, https://doi.org/10.1038/s41418-021-00782-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bussani, R., Schneider, E., Zentilin, L., Collesi, C., Ali, H., Braga, L., Volpe, M. C., Colliva, A., Zanconati, F., Berlot, G., Silvestri, F., Zacchigna, S., and Giacca, M. (2020) Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology, EBioMedicine, 61, 103104, https://doi.org/10.1016/j.ebiom.2020.103104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Manan, A., Pirzada, R. H., Haseeb, M., and Choi, S. (2022) Toll-like receptor mediation in SARS-CoV-2: a therapeutic approach, Int. J. Mol. Sci., 23, 10716, https://doi.org/10.3390/ijms231810716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hou, W., Wang, S., Wu, H., Xue, L., Wang, B., Wang, S., and Wang, H. (2022) Small GTPase-a key role in host cell for coronavirus infection and a potential target for coronavirus vaccine adjuvant discovery, Viruses, 14, 2044, https://doi.org/10.3390/v14092044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dimitrov, D. S. (2004) Virus entry: molecular mechanisms and biomedical applications, Nat. Rev. Microbiol., 2, 109-122, https://doi.org/10.1038/nrmicro817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oughtred, R., Rust, J., Chang, C., Breitkreutz, B. J., Stark, C., Willems, A., Boucher, L., Leung, G., Kolas, N., Zhang, F., Dolma, S., Coulombe-Huntington, J., Chatr-Aryamontri, A., Dolinski, K., and Tyers, M. (2021) The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions, Protein Sci., 30, 187-200, https://doi.org/10.1002/pro.3978.

    Article  CAS  PubMed  Google Scholar 

  27. Schiuma, G., Beltrami, S., Bortolotti, D., Rizzo, S., and Rizzo, R. (2022) Innate Immune Response in SARS-CoV-2 Infection, Microorganisms, 10, 501, https://doi.org/10.3390/microorganisms10030501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, S., Wang, L., and Cheng, G. (2022) The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies, Mol. Ther., 30, 1869-1884, https://doi.org/10.1016/j.ymthe.2022.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrag, M. A., Amer, H. M., Bhat, R., Hamed, M. E., Aziz, I. M., Mubarak, A., Dawoud, T. M., Almalki, S. G., Alghofaili, F., Alnemare, A. K., Al-Baradi, R. S., Alosaimi, B., and Alturaiki, W. (2021) SARS-CoV-2: an overview of virus genetics, transmission, and immunopathogenesis, Int. J. Environ Res. Public Health, 18, 6312, https://doi.org/10.3390/ijerph18126312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sette, A., and Crotty, S. (2021) Adaptive immunity to SARS-CoV-2 and COVID-19, Cell, 184, 861-880, https://doi.org/10.1016/j.cell.2021.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mabrey, F. L., Morrell, E. D., and Wurfel, M. M. (2021) TLRs in COVID-19: how they drive immunopathology and the rationale for modulation, Innate Immun., 27, 503-513, https://doi.org/10.1177/17534259211051364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bain, C. C., Lucas, C. D., and Rossi, A. G. (2022) Pulmonary macrophages and SARS-Cov2 infection, Int. Rev. Cell Mol. Biol., 367, 1-28, https://doi.org/10.1016/bs.ircmb.2022.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., Liu, L., Amit, I., Zhang, S., and Zhang, Z. (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat. Med., 26, 842-844, https://doi.org/10.1038/s41591-020-0901-9.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Chau, C., and Sugimura, R. (2022) Locked in a pro-inflammatory state, Elife, 11, e80699, https://doi.org/10.7554/eLife.80699.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Salina, A. C. G., Dos-Santos, D., Rodrigues, T. S., Fortes-Rocha, M., Freitas-Filho, E. G., Alzamora-Terrel, D. L., Castro, I. M. S., Fraga da Silva, T. F. C., de Lima, M. H. F., Nascimento, D. C., Silva, C. M., Toller-Kawahisa, J. E., Becerra, A., Oliveira, S., Caetite, D. B., Almeida, L., Ishimoto, A. Y., Lima, T. M., Martins, R. B., Veras, F., et al. (2022) Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells, Elife, 11, e74443, https://doi.org/10.7554/eLife.74443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Georgakopoulou, V. E., Makrodimitri, S., Triantafyllou, M., Samara, S., Voutsinas, P. M., Anastasopoulou, A., Papageorgiou, C. V., Spandidos, D. A., Gkoufa, A., Papalexis, P., Xenou, E., Chelidonis, G., Sklapani, P., Trakas, N., and Sipsas, N. V. (2022) Immature granulocytes: Innovative biomarker for SARS‑CoV‑2 infection, Mol. Med. Rep., 26, 217, https://doi.org/10.3892/mmr.2022.12733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dean, L. S., Devendra, G., Jiyarom, B., Subia, N., Tallquist, M. D., Nerurkar, V. R., Chang, S. P., Chow, D. C., Shikuma, C. M., and Park, J. (2022) Phenotypic alteration of low-density granulocytes in people with pulmonary post-acute sequalae of SARS-CoV-2 infection, Front. Immunol., 13, 1076724, https://doi.org/10.3389/fimmu.2022.1076724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vorobjeva, N. V. (2020) Neutrophil extracellular traps: new aspects, Vestnik Moskovskogo universiteta. Seriya 16. Biologiya, 75, 16.

    Google Scholar 

  39. Labzin, L. I., Chew, K. Y., Eschke, K., Wang, X., Esposito, T., Stocks, C. J., Rae, J., Patrick, R., Mostafavi, H., Hill, B., Yordanov, T. E., Holley, C. L., Emming, S., Fritzlar, S., Mordant, F. L., Steinfort, D. P., Subbarao, K., Nefzger, C. M., Lagendijk, A. K., Gordon, E. J., et al. (2023) Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release, Sci. Signal., 16, eabq1366, https://doi.org/10.1126/scisignal.abq1366.

    Article  CAS  PubMed  Google Scholar 

  40. Jalloh, S., Olejnik, J., Berrigan, J., Nisa, A., Suder, E. L., Akiyama, H., Lei, M., Ramaswamy, S., Tyagi, S., Bushkin, Y., Muhlberger, E., and Gummuluru, S. (2022) CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses, PLoS Pathog., 18, e1010479, https://doi.org/10.1371/journal.ppat.1010479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knoll, R., Schultze, J. L., and Schulte-Schrepping, J. (2021) Monocytes and macrophages in COVID-19, Front. Immunol., 12, 720109, https://doi.org/10.3389/fimmu.2021.720109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laidlaw, B. J., and Ellebedy, A. H. (2022) The germinal centre B cell response to SARS-CoV-2, Nat. Rev. Immunol., 22, 7-18, https://doi.org/10.1038/s41577-021-00657-1.

    Article  CAS  PubMed  Google Scholar 

  43. Shen, X. R., Geng, R., Li, Q., Chen, Y., Li, S. F., Wang, Q., Min, J., Yang, Y., Li, B., Jiang, R. D., Wang, X., Zheng, X. S., Zhu, Y., Jia, J. K., Yang, X. L., Liu, M. Q., Gong, Q. C., Zhang, Y. L., Guan, Z. Q., Li, H. L., et al. (2022) ACE2-independent infection of T lymphocytes by SARS-CoV-2, Signal. Transduct. Target Ther., 7, 83, https://doi.org/10.1038/s41392-022-00919-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., Stralin, K., Gorin, J. B., Olsson, A., Llewellyn-Lacey, S., Kamal, H., Bogdanovic, G., Muschiol, S., Wullimann, D. J., Kammann, T., Emgard, J., Parrot, T., Folkesson, E., Karolinska, C.-S. G., Rooyackers, O., Eriksson, L. I., Henter, J. I., Sonnerborg, A., et al. (2020) Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19, Cell, 183, 158-168 e114, https://doi.org/10.1016/j.cell.2020.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shakiba, M. H., Gemund, I., Beyer, M., and Bonaguro, L. (2023) Lung T cell response in COVID-19, Front. Immunol., 14, 1108716, https://doi.org/10.3389/fimmu.2023.1108716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ogura, H., Gohda, J., Lu, X., Yamamoto, M., Takesue, Y., Son, A., Doi, S., Matsushita, K., Isobe, F., Fukuda, Y., Huang, T. P., Ueno, T., Mambo, N., Murakami, H., Kawaguchi, Y., Inoue, J. I., Shirai, K., Yamasaki, S., Hirata, J. I., and Ishido, S. (2022) Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19, Nat. Commun., 13, 7063, https://doi.org/10.1038/s41467-022-34655-1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Moss, P. (2022) The T cell immune response against SARS-CoV-2, Nat. Immunol., 23, 186-193, https://doi.org/10.1038/s41590-021-01122-w.

    Article  CAS  PubMed  Google Scholar 

  48. Du, J., Wei, L., Li, G., Hua, M., Sun, Y., Wang, D., Han, K., Yan, Y., Song, C., Song, R., Zhang, H., Han, J., Liu, J., and Kong, Y. (2021) Persistent high percentage of HLA-DR+CD38(high) CD8+ T cells associated with immune disorder and disease severity of COVID-19, Front. Immunol., 12, 735125, https://doi.org/10.3389/fimmu.2021.735125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng, M. H., Zhang, S., Porritt, R. A., Noval Rivas, M., Paschold, L., Willscher, E., Binder, M., Arditi, M., and Bahar, I. (2020) Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation, Proc. Natl. Acad. Sci. USA, 117, 25254-25262, https://doi.org/10.1073/pnas.2010722117.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A., and Ng, L. F. P. (2020) The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol., 20, 363-374, https://doi.org/10.1038/s41577-020-0311-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flower, T. G., Buffalo, C. Z., Hooy, R. M., Allaire, M., Ren, X., and Hurley, J. H. (2021) Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein, Proc. Natl. Acad. Sci. USA, 118, e2021785118, https://doi.org/10.1073/pnas.2021785118.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y., Chen, Y., Li, Y., Huang, F., Luo, B., Yuan, Y., Xia, B., Ma, X., Yang, T., Yu, F., Liu, J., Liu, B., Song, Z., Chen, J., Yan, S., Wu, L., Pan, T., Zhang, X., Li, R., Huang, W., et al. (2021) The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Iota, Proc. Natl. Acad. Sci. USA, 118, e2024202118, https://doi.org/10.1073/pnas.2024202118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arshad, N., Laurent-Rolle, M., Ahmed, W. S., Hsu, J. C., Mitchell, S. M., Pawlak, J., Sengupta, D., Biswas, K. H., and Cresswell, P. (2023) SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression, Proc. Natl. Acad. Sci. USA, 120, e2208525120, https://doi.org/10.1073/pnas.2208525120.

    Article  CAS  PubMed  Google Scholar 

  54. Redondo, N., Zaldivar-Lopez, S., Garrido, J. J., and Montoya, M. (2021) SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns, Front. Immunol., 12, 708264, https://doi.org/10.3389/fimmu.2021.708264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoo, J. S., Sasaki, M., Cho, S. X., Kasuga, Y., Zhu, B., Ouda, R., Orba, Y., de Figueiredo, P., Sawa, H., and Kobayashi, K. S. (2021) SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis, Nat. Commun., 12, 6602, https://doi.org/10.1038/s41467-021-26910-8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Zandi, M., Shafaati, M., Kalantar-Neyestanaki, D., Pourghadamyari, H., Fani, M., Soltani, S., Kaleji, H., and Abbasi, S. (2022) The role of SARS-CoV-2 accessory proteins in immune evasion, Biomed. Pharmacother., 156, 113889, https://doi.org/10.1016/j.biopha.2022.113889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hackbart, M., Deng, X., and Baker, S. C. (2020) Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors, Proc. Natl. Acad. Sci. USA, 117, 8094-8103, https://doi.org/10.1073/pnas.1921485117.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Wang, Z., Zhou, P., Muecksch, F., Cho, A., Ben Tanfous, T., Canis, M., Witte, L., Johnson, B., Raspe, R., Schmidt, F., Bednarski, E., Da Silva, J., Ramos, V., Zong, S., Turroja, M., Millard, K. G., Yao, K. H., Shimeliovich, I., Dizon, J., Kaczynska, A., et al. (2022) Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans, J. Exp. Med., 219, e20221006, https://doi.org/10.1084/jem.20221006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Felsenstein, S., Herbert, J. A., McNamara, P. S., and Hedrich, C. M. (2020) COVID-19: Immunology and treatment options, Clin. Immunol., 215, 108448, https://doi.org/10.1016/j.clim.2020.108448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduondo, L., Samir, P., Zheng, M., Sundaram, B., Banoth, B., Malireddi, R. K. S., Schreiner, P., Neale, G., Vogel, P., Webby, R., Jonsson, C. B., and Kanneganti, T. D. (2021) Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes, Cell, 184, 149-168.e117, https://doi.org/10.1016/j.cell.2020.11.025.

    Article  CAS  PubMed  Google Scholar 

  61. Meng, Q. F., Tian, R., Long, H., Wu, X., Lai, J., Zharkova, O., Wang, J. W., Chen, X., and Rao, L. (2021) Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm, Adv. Mater., 33, e2100012, https://doi.org/10.1002/adma.202100012.

    Article  CAS  PubMed  Google Scholar 

  62. Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., Chen, Y., and Zhang, Y. (2020) COVID-19: immunopathogenesis and Immunotherapeutics, Signal. Transduct. Target Ther., 5, 128, https://doi.org/10.1038/s41392-020-00243-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, L., Xie, X., Tu, Z., Fu, J., Xu, D., and Zhou, Y. (2021) The signal pathways and treatment of cytokine storm in COVID-19, Signal. Transduct. Target Ther., 6, 255, https://doi.org/10.1038/s41392-021-00679-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu, Y., Dong, X., Liu, N., Wu, T., Chong, H., Lei, X., Ren, L., Wang, J., and He, Y. (2022) SARS-CoV-2 fusion-inhibitory lipopeptides maintain high potency against divergent variants of concern including Omicron, Emerg. Microbes Infect., 11, 1819-1827, https://doi.org/10.1080/22221751.2022.2098060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peacock, T. P., Brown, J. C., Zhou, J., Thakur, N., Newman, J., Kugathasan, R., Sukhova, K., Kaforou, M., Bailey, D., and Barclay, W. S. (2022) The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry, bioRxiv, https://doi.org/10.1101/2021.12.31.474653.

    Article  Google Scholar 

  66. Chan, K. K., Tan, T. J. C., Narayanan, K. K., and Procko, E. (2021) An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants, Sci. Adv., 7, https://doi.org/10.1126/sciadv.abf1738.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lythgoe, K. A., Hall, M., Ferretti, L., de Cesare, M., MacIntyre-Cockett, G., Trebes, A., Andersson, M., Otecko, N., Wise, E. L., Moore, N., Lynch, J., Kidd, S., Cortes, N., Mori, M., Williams, R., Vernet, G., Justice, A., Green, A., Nicholls, S. M., Ansari, M. A., et al. (2021) SARS-CoV-2 within-host diversity and transmission, Science, 372, https://doi.org/10.1126/science.abg0821.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mendes-Correa, M. C., Salomao, M. C., Ghilardi, F., Tozetto-Mendoza, T. R., Santos Villas-Boas, L., de Paula, A. V., Paiao, H. G. O., da Costa, A. C., Leal, F. E., Ferraz, A. B. C., Sales, F. C. S., Claro, I. M., Ferreira, N. E., Pereira, G. M., da Silva, A. R., Jr., Freire, W., Espinoza, E. P. S., Manuli, E. R., Romano, C. M., de Jesus, J. G., et al. (2023) SARS-CoV-2 detection and culture in different biological specimens from immunocompetent and immunosuppressed COVID-19 patients infected with two different viral strains, Viruses, 15, 1270, https://doi.org/10.3390/v15061270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., and Katzourakis, A. (2023) The evolution of SARS-CoV-2, Nat. Rev. Microbiol., 21, 361-379, https://doi.org/10.1038/s41579-023-00878-2.

    Article  CAS  PubMed  Google Scholar 

  70. Leitao, I. C., Calil, P. T., Galliez, R. M., Moreira, F. R. R., Mariani, D., Castineiras, A. C. P., da Silva, G. P. D., Maia, R. A., Correa, I. A., Monteiro, F. L. L., de Souza, M. R. M., Goncalves, C. C. A., Higa, L. M., de Jesus Ribeiro, L., Fonseca, V. W. P., Bastos, V. C., Voloch, C. M., Faffe, D. S., da Costa Ferreira, O., Jr., Tanuri, A., et al. (2021) Prolonged SARS-CoV-2 positivity in immunocompetent patients: virus isolation, genomic integrity, and transmission risk, Microbiol. Spectr., 9, e0085521, https://doi.org/10.1128/Spectrum.00855-21.

    Article  PubMed  Google Scholar 

  71. Wang, Q., Ye, S. B., Zhou, Z. J., Li, J. Y., Lv, J. Z., Hu, B., Yuan, S., Qiu, Y., and Ge, X. Y. (2023) Key mutations on spike protein altering ACE2 receptor utilization and potentially expanding host range of emerging SARS-CoV-2 variants, J. Med. Virol., 95, e28116, https://doi.org/10.1002/jmv.28116.

    Article  CAS  PubMed  Google Scholar 

  72. Shu, C. J., Huang, X., Tang, H. H., Mo, D. D., Zhou, J. W., and Deng, C. (2021) Mutations in spike protein and allele variations in ACE2 impact targeted therapy strategies against SARS-CoV-2, Zool. Res., 42, 170-181, https://doi.org/10.24272/j.issn.2095-8137.2020.301.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Erausquin, E., Glaser, F., Fernandez-Recio, J., and Lopez-Sagaseta, J. (2022) Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution, Acta Crystallogr. D Struct. Biol., 78, 1156-1170, https://doi.org/10.1107/S2059798322007677.

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Shah, M., and Woo, H. G. (2021) Omicron: a heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies, Front. Immunol., 12, 830527, https://doi.org/10.3389/fimmu.2021.830527.

    Article  CAS  PubMed  Google Scholar 

  75. Huang, C., Yang, Y., Yang, P., Wang, F., Li, X., Song, X., Wang, Y., Yu, C., Wang, X., and Wang, S. (2022) A robust reporting system for measurement of SARS-CoV-2 spike fusion efficiency, Signal. Transduct. Target Ther., 7, 179, https://doi.org/10.1038/s41392-022-01037-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McMahan, K., Giffin, V., Tostanoski, L. H., Chung, B., Siamatu, M., Suthar, M. S., Halfmann, P., Kawaoka, Y., Piedra-Mora, C., Jain, N., Ducat, S., Kar, S., Andersen, H., Lewis, M. G., Martinot, A. J., and Barouch, D. H. (2022) Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters, Med, 3, 262-268.e264, https://doi.org/10.1016/j.medj.2022.03.004.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P. D., Graham, B. S., Mascola, J. R., Chang, J. Y., Yin, M. T., Sobieszczyk, M., Kyratsous, C. A., Shapiro, L., Sheng, Z., Huang, Y., and Ho, D. D. (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7, Nature, 593, 130-135, https://doi.org/10.1038/s41586-021-03398-2.

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Singh, A., Steinkellner, G., Kochl, K., Gruber, K., and Gruber, C. C. (2021) Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2, Sci. Rep., 11, 4320, https://doi.org/10.1038/s41598-021-83761-5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Mondeali, M., Etemadi, A., Barkhordari, K., Mobini Kesheh, M., Shavandi, S., Bahavar, A., Tabatabaie, F. H., Mahmoudi Gomari, M., and Modarressi, M. H. (2023) The role of S477N mutation in the molecular behavior of SARS-CoV-2 spike protein: an in silico perspective, J. Cell Biochem., 124, 308-319, https://doi.org/10.1002/jcb.30367.

    Article  CAS  PubMed  Google Scholar 

  80. Zhao, H., Lu, L., Peng, Z., Chen, L. L., Meng, X., Zhang, C., Ip, J. D., Chan, W. M., Chu, A. W., Chan, K. H., Jin, D. Y., Chen, H., Yuen, K. Y., and To, K. K. (2022) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells, Emerg. Microbes Infect., 11, 277-283, https://doi.org/10.1080/22221751.2021.2023329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Starr, T. N., Greaney, A. J., Stewart, C. M., Walls, A. C., Hannon, W. W., Veesler, D., and Bloom, J. D. (2022) Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains, PLoS Pathog., 18, e1010951, https://doi.org/10.1371/journal.ppat.1010951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., Yu, Y., Wang, P., Zhang, Z., Liu, P., An, R., Hao, X., Wang, Y., Wang, J., Feng, R., Sun, H., et al. (2022) BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection, Nature, 608, 593-602, https://doi.org/10.1038/s41586-022-04980-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Garcia-Beltran, W. F., Lam, E. C., St Denis, K., Nitido, A. D., Garcia, Z. H., Hauser, B. M., Feldman, J., Pavlovic, M. N., Gregory, D. J., Poznansky, M. C., Sigal, A., Schmidt, A. G., Iafrate, A. J., Naranbhai, V., and Balazs, A. B. (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell, 184, 2372-2383.e2379, https://doi.org/10.1016/j.cell.2021.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cao, Y., Jian, F., Wang, J., Yu, Y., Song, W., Yisimayi, A., Wang, J., An, R., Chen, X., Zhang, N., Wang, Y., Wang, P., Zhao, L., Sun, H., Yu, L., Yang, S., Niu, X., Xiao, T., Gu, Q., Shao, F., et al. (2023) Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution, Nature, 614, 521-529, https://doi.org/10.1038/s41586-022-05644-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Kaku, C. I., Starr, T. N., Zhou, P., Dugan, H. L., Khalife, P., Song, G., Champney, E. R., Mielcarz, D. W., Geoghegan, J. C., Burton, D. R., Raiees, A., Bloom, J. D., and Walker, L. M. (2022) Evolution of antibody immunity following Omicron BA.1 breakthrough infection, bioRxiv, https://doi.org/10.1101/2022.09.21.508922.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Alsoussi, W. B., Malladi, S. K., Zhou, J. Q., Liu, Z., Ying, B., Kim, W., Schmitz, A. J., Lei, T., Horvath, S. C., Sturtz, A. J., McIntire, K. M., Evavold, B., Han, F., Scheaffer, S. M., Fox, I. F., Mirza, S. F., Parra-Rodriguez, L., Nachbagauer, R., Nestorova, B., Chalkias, S., et al. (2023) SARS-CoV-2 Omicron boosting induces de novo B cell response in humans, Nature, 617, 592-598, https://doi.org/10.1038/s41586-023-06025-4.

    Article  CAS  PubMed  ADS  Google Scholar 

  87. Van der Made, C. I., Netea, M. G., van der Veerdonk, F. L., and Hoischen, A. (2022) Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19, Genome Med., 14, 96, https://doi.org/10.1186/s13073-022-01100-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nhung, V. P., Ton, N. D., Ngoc, T. T. B., Thuong, M. T. H., Hai, N. T. T., Oanh, K. T. P., Hien, L. T. T., Thach, P. N., Hai, N. V., and Ha, N. H. (2022) Host genetic risk factors associated with COVID-19 susceptibility and severity in Vietnamese, Genes (Basel), 13, 1884, https://doi.org/10.3390/genes13101884.

    Article  CAS  PubMed  Google Scholar 

  89. Pietzner, M., Chua, R. L., Wheeler, E., Jechow, K., Willett, J. D. S., Radbruch, H., Trump, S., Heidecker, B., Zeberg, H., Heppner, F. L., Eils, R., Mall, M. A., Richards, J. B., Sander, L. E., Lehmann, I., Lukassen, S., Wareham, N. J., Conrad, C., and Langenberg, C. (2022) ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19, Nat. Commun., 13, 4484, https://doi.org/10.1038/s41467-022-31999-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Smatti, M. K., Alkhatib, H. A., Al Thani, A. A., and Yassine, H. M. (2022) Will host genetics affect the response to SARS-CoV-2 vaccines? Historical precedents, Front. Med. (Lausanne), 9, 802312, https://doi.org/10.3389/fmed.2022.802312.

    Article  PubMed  Google Scholar 

  91. Cappadona, C., Rimoldi, V., Paraboschi, E. M., and Asselta, R. (2023) Genetic susceptibility to severe COVID-19, Infect. Genet. Evol., 110, 105426, https://doi.org/10.1016/j.meegid.2023.105426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delanghe, J. R., and Speeckaert, M. M. (2022) Host polymorphisms and COVID-19 infection, Adv Clin Chem, 107, 41-77, https://doi.org/10.1016/bs.acc.2021.07.002.

    Article  CAS  PubMed  Google Scholar 

  93. Andolfo, I., Russo, R., Lasorsa, V. A., Cantalupo, S., Rosato, B. E., Bonfiglio, F., Frisso, G., Abete, P., Cassese, G. M., Servillo, G., Esposito, G., Gentile, I., Piscopo, C., Villani, R., Fiorentino, G., Cerino, P., Buonerba, C., Pierri, B., Zollo, M., Iolascon, A., et al. (2021) Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19, iScience, 24, 102322, https://doi.org/10.1016/j.isci.2021.102322.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Zguro, K., Fallerini, C., Fava, F., Furini, S., and Renieri, A. (2022) Host genetic basis of COVID-19: from methodologies to genes, Eur. J. Hum. Genet., 30, 899-907, https://doi.org/10.1038/s41431-022-01121-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verma, A., Minnier, J., Wan, E. S., Huffman, J. E., Gao, L., Joseph, J., Ho, Y. L., Wu, W. C., Cho, K., Gorman, B. R., Rajeevan, N., Pyarajan, S., Garcon, H., Meigs, J. B., Sun, Y. V., Reaven, P. D., McGeary, J. E., Suzuki, A., Gelernter, J., Lynch, J. A., et al. (2022) A MUC5B gene polymorphism, rs35705950-T, confers protective effects against COVID-19 hospitalization but not severe disease or mortality, Am. J. Respir. Crit. Care Med., 206, 1220-1229, https://doi.org/10.1164/rccm.202109-2166OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arnold, C. G., Konigsberg, I., Adams, J. Y., Sharma, S., Aggarwal, N., Hopkinson, A., Vest, A., Campbell, M., Boorgula, M., Yang, I., Gignoux, C., Barnes, K. C., and Monte, A. A. (2022) Epigenetics may characterize asymptomatic COVID-19 infection, Hum. Genomics, 16, 27, https://doi.org/10.1186/s40246-022-00401-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zietz, M., Zucker, J., and Tatonetti, N. P. (2020) Associations between blood type and COVID-19 infection, intubation, and death, Nat. Commun., 11, 5761, https://doi.org/10.1038/s41467-020-19623-x.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Franchini, M., Capra, F., Targher, G., Montagnana, M., and Lippi, G. (2007) Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications, Thromb. J., 5, 14, https://doi.org/10.1186/1477-9560-5-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, S. C., Arthur, C. M., Jan, H. M., Garcia-Beltran, W. F., Patel, K. R., Rathgeber, M. F., Verkerke, H. P., Cheedarla, N., Jajosky, R. P., Paul, A., Neish, A. S., Roback, J. D., Josephson, C. D., Wesemann, D. R., Kalman, D., Rakoff-Nahoum, S., Cummings, R. D., and Stowell, S. R. (2023) Blood group A enhances SARS-CoV-2 infection, Blood, 142, 742-747, https://doi.org/10.1182/blood.2022018903.

    Article  CAS  PubMed  Google Scholar 

  100. MacGowan, S. A., Barton, M. I., Kutuzov, M., Dushek, O., van der Merwe, P. A., and Barton, G. J. (2022) Missense variants in human ACE2 strongly affect binding to SARS-CoV-2 Spike providing a mechanism for ACE2 mediated genetic risk in Covid-19: A case study in affinity predictions of interface variants, PLoS Comput. Biol., 18, e1009922, https://doi.org/10.1371/journal.pcbi.1009922.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Chen, F., Zhang, Y., Li, X., Li, W., Liu, X., and Xue, X. (2021) The impact of ACE2 polymorphisms on COVID-19 disease: susceptibility, severity, and therapy, Front. Cell. Infect. Microbiol., 11, 753721, https://doi.org/10.3389/fcimb.2021.753721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hattori, T., Saito, T., Okuya, K., Takahashi, Y., Miyamoto, H., Kajihara, M., Igarashi, M., and Takada, A. (2022) Human ACE2 genetic polymorphism affecting SARS-CoV and SARS-CoV-2 entry into cells, Microbiol. Spectr., 10, e0087022, https://doi.org/10.1128/spectrum.00870-22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done within the framework of the Strategic Academic Leadership Program (PRIORITY-2030) of Kazan Federal University.

Funding

The work was financially supported by the subsidy allocated to the Kazan Federal University to fulfill the state task in the field of scientific activity (project no. FZSM-2023-0011).

Author information

Authors and Affiliations

Authors

Contributions

A.G.G., R.R.M., and A.A.R. conceptualization and structure of work; manuscript editing; R.N.M., A.M.R., A.R.S., Yu.V.F., and A.G.G. literature analysis, manuscript writing; preparation of illustrations.

Corresponding author

Correspondence to Aida G. Gabdoulkhakova.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabdoulkhakova, A.G., Mingaleeva, R.N., Romozanova, A.M. et al. Immunology of SARS-CoV-2 Infection. Biochemistry Moscow 89, 65–83 (2024). https://doi.org/10.1134/S0006297924010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010048

Keywords

Navigation