Skip to main content
Log in

Synthesis and Biological Properties of Polyphenol-Containing Linear and Dendrimeric Cationic Peptides

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

CP:

cationic peptide

GA:

gallic acid

PBS:

phosphate buffered saline

ROS:

reactive oxygen species

References

  1. Alam, M. S., and Czajkowsky, D. M. (2021) SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities, Cytokine Growth Factor Rev., 63, 44-57, https://doi.org/10.1016/j.cytogfr.2021.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lozano-Sepulveda, S., Bryan-Marrugo, O. L., Cordovo-Fletes, C., Gutierrez-Ruiz, M. C., and Rivas-Estilla, A. M. (2015) Oxidative stress modulation in hepatitis C virus infected cells, World J. Hepatol., 7, 2880-2889, https://doi.org/10.4254/wjh.v7.i29.2880.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soomro, S. (2019) Oxidative stress and inflammation, Open J. Immun., 9, 1-20, https://doi.org/10.4236/oji.2019.91001.

    Article  CAS  Google Scholar 

  4. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., and Bitto, A. (2017) Oxidative stress: harms and benefits for human health, Oxid. Med. Cell Longev., 2017, 8416763, https://doi.org/10.1155/2017/8416763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nauser, T., and Gebicki, J. M. (2017) Reaction rates of glutathione and ascorbate with alkyl radicals are too slow for protection against protein peroxidation in vivo, Arch. Biochem. Biophys., 633, 118-123, https://doi.org/10.1016/j.abb.2017.09.011.

    Article  CAS  PubMed  Google Scholar 

  6. Tarakhovskiy, Yu. S., Kim, Yu. A., Abdrasilov, B. S., and Muzafarov, E. N. (2013) Flavanoidy: Biochimia, Biophisica, Medicina, Puschino: Synchrobook.

  7. Andreev, S. M., Shershakova, N. N., Kozhikhova, K. V., Shatilov, A. A., Timofeeva, A. V., Turetskiy, E. A., Kudlai, D. A., and Khaitov, M. R. (2020) Promising compounds from natural sources for the COVID-19 therapy, Russ. J. Allergy, 17, 18-25, https://doi.org/10.36691/RJA132.

    Article  Google Scholar 

  8. Veiko, A. G. (2020) Molecular structure, quantum-chemical parameters, mechanism of cytoprotective effect and the contribution of functional groups to antioxidant potential of flavonoids, Vestnik VGMU, 19, 27-39, https://doi.org/10.22263/2312-4156.2020.5.27.

    Article  Google Scholar 

  9. Treml, J., and Šmejkal, K. (2016) Flavonoids as potent scavengers of hydroxyl radicals, Compr. Rev. Food Sci. Food Safety, 15, 720-738, https://doi.org/10.1111/1541-4337.12204.

    Article  CAS  Google Scholar 

  10. Briguglio, G., Costa, C., Pollicino, M., Giambo, F., Catania, S., and Fenga, C. (2020) Polyphenols in cancer prevention: new insights (Review), Int. J. Func. Nutr., 1, 9, https://doi.org/10.3892/ijfn.2020.9.

    Article  Google Scholar 

  11. Zverev, Y. F. (2019) Antitumor activity of flavonoids, Bull. Siber. Med., 18, 181-194, https://doi.org/10.20538/1682-0363-2019-2-181-194.

    Article  Google Scholar 

  12. Perron, N. R., and Brumaghim, J. L. (2009) A Review of the antioxidant mechanisms of polyphenol, Cell. Biochem. Biophys., 53, 75-100, https://doi.org/10.1007/s12013-009-9043-x.

    Article  CAS  PubMed  Google Scholar 

  13. Das, J., Ramani, R., and Suraju, M. O. (2016) Polyphenol compounds and PKC signaling, Biochim. Biophys. Acta, 1860, 2107-2121, https://doi.org/10.1016/j.bbagen.2016.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mulder, T. P. J., van Platerink, C. J., Schuyl, P. J. W., and van Amlsvoort, J. M. M. (2001) Analysis of theaflavins in biological fluids using liquid chromatography–electrospray mass spectrometry, J.Chromatogr. B Biomed. Sci. Appl., 760, 271-279, https://doi.org/10.1016/S0378-4347(01)00285-7.

    Article  CAS  PubMed  Google Scholar 

  15. Mullen, W., Archeveque, M. A., Edwards, C. A., Matsumoto, H., and Crozier, A. (2008) Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt, J. Agric. Food Chem., 56, 11157-11164, https://doi.org/10.1021/jf801974v.

    Article  CAS  PubMed  Google Scholar 

  16. Paolino, D., Cosco, D., Cilurzo, F., and Fresta, M. (2007) Innovative Drug Delivery systems for the administration of natural compounds, Curr. Bioact. Comp., 3, 262-277, https://doi.org/10.2174/157340707783220301.

    Article  CAS  Google Scholar 

  17. Aatif, M. (2023) Current understanding of polyphenols to enhance bioavailability for better therapies, Biomedicines, 11, 2078, https://doi.org/10.3390/biomedicines11072078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R. J., and Yang, Z. (2020) Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application, Front. Pharmacol., 11, 697, https://doi.org/10.3389/fphar.2020.00697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozhikhova, K. V., Andreev, S. M., Shilovskiy, I. P., Timofeeva, A. V., Gaisina, A. R., Shatilov, A. A., Turetskiy, E. A., Andreev, I. M., Smirnov, V. V., Dvornikov, A. S., and Khaitov, M. R. (2018) A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells, Org. Biomol. Chem., 2018, 8181-8190, https://doi.org/10.1039/c8ob02039f.

    Article  CAS  Google Scholar 

  20. Khaitov, M., Nikonova, A., Shilovskiy, I., Kozhikhova, K., Kofiadi, I., Vishnyakova, L., Nikolskii, A., Gattinger, P., Kovchina, V.,Barvinskaia, E., Yumashev, K., Smirnov, V., Maerle, A., Kozlov, I., Shatilov, A., Timofeeva, A., Andreev, S., Koloskova, O.,Kuznetsova, N., Vasina, D., Nikiforova, M., Rybalkin, S., Sergeev, I., Trofimov, D., Martynov, A., Berzin, I., Gushchin, V.,Kovalchuk, A., Borisevich, S., Valenta, R., Khaitov, R., and Skvortsova, V. (2021) Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy, 76, 2840-2854, https://doi.org/10.1111/all.14850.

    Article  CAS  PubMed  Google Scholar 

  21. Shilovskiy, I. P., Andreev, S. M., Kozhikhova, K. V., Nikolskii, A. A., and Khaitov, M. R. (2019) Prospects for the use of peptides against respiratory syncytial virus, Mol. Biol., 53, 484-500, https://doi.org/10.1134/S0026893319040125.

    Article  CAS  Google Scholar 

  22. Piccoli, J. P., and Cilli, E. M. (2014) Synthesis and activity of conjugates Gallic acid-GnRH-III, BMC Proceed., 8, 41, https://doi.org/10.1186/1753-6561-8-S4-P41.

    Article  Google Scholar 

  23. Lee, H., Kim, K., Oh, C., Park, C.-H., Aliya, S., Kim, H.-S., Bajpai, V. K., and Huh, Y. S. (2021) Antioxidant and anti-aging potential of a peptide formulation (Gal2–Pep) conjugated with gallic acid, RSC Adv., 11, 29407-29415, https://doi.org/10.1039/d1ra03421a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanches, P. R. S., Carneiro, B. M., Batista, M. N., Braga, A. C. S., Lorenzón, E. N., Rahal, P., and Cilli, E. M. (2015) A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity, Amino Acids, 47, 1433-1443; https://doi.org/10.1007/s00726-015-1980-7.14-16.

    Article  CAS  PubMed  Google Scholar 

  25. Pereira, D., Pinto, M., Correa-da-Silva, V., and Cidade, H. (2022) Recent advances in bioactive flavonoid hybrids linked by 1,2,3-triazole ring obtained by click chemistry, Molecules, 27, 230, https://doi.org/10.3390/molecules27010230.

    Article  CAS  Google Scholar 

  26. Ghamry, H. I., Belal, A., El-Ashrey, M. K., Tawfik, H. O., Alsantali, R. I., Obaidullah, A. J., El-Mansi, A. A., and Abdelrahman, D. (2023) Evaluating the ability of some natural phenolic acids to target the main protease and AAK1 in SARS CoV-2, Sci. Rep., 13, 7357, https://doi.org/10.1038/s41598-023-34189-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sehrawat, R., Rathee, R., Akkol, E. K., Khatkar, S., Lather, A., Redhu, N., and Khatkar, A. (2022) Phenolic acids – versatile natural moiety with numerous biological applications, Curr. Topics Med. Chem., 22, 1472-1484, https://doi.org/10.2174/1568026622666220623114450.

    Article  CAS  Google Scholar 

  28. Choi, H. J., Song, J. H., Bhatt, L. R., and Baek, S. H. (2010) Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity, Phytother. Res., 24, 1292-1296, https://doi.org/10.1002/ptr.3101.

    Article  CAS  PubMed  Google Scholar 

  29. Kratz, J. M., Andrighetti-Fröhner, C. R., Kolling, D. J., Leal, P. C., Cirne-Santos, C. C., Yunes, R. A., Nunes, R. J., Trybala, E., Bergström, T., Frugulhetti, I. C., Barardi, C. R., and Simões, C. M. (2008) Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentylgallate, Mem. Inst. Oswaldo Cruz, 103, 437-442, https://doi.org/10.1590/s0074-02762008000500005.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, K., Zhang, L., Liao, P., Xiao, Z., Zhang, F., Sindaye, D., Xin, Z., Tan, C., Deng, J., Yin, Y., and Deng, B. (2020) Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action, Front. Immunol., 11, 580208, https://doi.org/10.3389/fimmu.2020.580208.11-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Al Zahrani, N. A., El-Shishtawy, R. M., and Asiri, A. M. (2020) Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: a review, Eur. J. Med. Chem., 204, 112609, https://doi.org/10.1016/j.ejmech.2020.112609.

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez-Moreno, C., Larrauri, J. A., and Saura-Calixto, F. (1998) A procedure to measure the antiradical efficiency of polyphenols, J. Sci. Food Agric., 76, 270-276, https://doi.org/10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9.17.

    Article  CAS  Google Scholar 

  33. Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., and Lukyanov, S. (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nat. Methods, 3, 281-286, https://doi.org/10.1038/nmeth866.

    Article  CAS  PubMed  Google Scholar 

  34. Galkina, A. A., Bolyakina, D. K., Shatilova, A. V., Shatilov, A. A., Babikhina, M. O., Golomidova, A. K., et al. (2023) Developing and evaluating the effectiveness of wound-healing compounds based on cationic peptides and fullerene, Extreme Med., 3, 53-60, https://doi.org/10.47183/mes.2023.036.

    Article  Google Scholar 

  35. Özyürek, M., Bektasoglu, B., Güçlü, K., Güngör, N., and Apak, R. (2010) A novel hydrogen peroxide scavenging assay of phenolics and flavonoids using cupric reducing antioxidant capacity (CUPRAC) methodology, J. Food Comp. Analysis, 23, 689-698, https://doi.org/10.1016/j.jfca.2010.02.013.

    Article  CAS  Google Scholar 

  36. Mishina, N. M., Markvicheva, K. N., Fradkov, A. F., Zagaynova, E. V., Schultz, C., Lukyanov, S., Belousov, V. V. (2013) Imaging H2O2 microdomains in receptor tyrosine kinases signaling, Methods Enzymol., 526, 175-187, https://doi.org/10.1016/B978-0-12-405883-5.00011-9.

    Article  CAS  PubMed  Google Scholar 

  37. Nikitin, E. A., Kleymenov, K. V., Batienco, D. D., Akulenko, D. A., Seliverstov, P. V., Dobritsa, V. P., and Radchenko, V. G. (2019) New approaches to the impact on the pathogenetic links of sepsis, Med. Sovet, 21, 240-246, https://doi.org/10.21518/2079-701X-2019-21-240-246.

    Article  Google Scholar 

  38. Aisa-Alvarez, A., Soto, M. E., Guarner-Lans, V., Camarena-Alejo, G., Franco-Granillo, J., Martínez-Rodríguez, E. A., Gamboa, Á. R., Manzano, P. L., and Pérez-Torres, I. (2020) Usefulness of antioxidants as adjuvant therapy for septic shock: a randomized clinical trial, Medicina, 56, 619, https://doi.org/10.3390/medicina56110619.20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheng, Y., Li, X., Tse, H.-F., and Rong, J. (2018) Gallic acid-L-leucine conjugate protects mice against LPS-induced inflammation and sepsis via correcting proinflammatory lipid mediator profiles and oxidative stress, Oxid. Med. Cell. Longev., 2018, 1081287, https://doi.org/10.1155/2018/1081287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Federal Medical-Biological Agency of Russian Federation ("Dendrimer 21" program).

Author information

Authors and Affiliations

Authors

Contributions

S.M.A. and M.R.Kh. designed and managed the study; A.A.Sh., A.V.Sh., E.A.T., R.A.K., D.K.B., M.O.B., and L.V.S. conducted experiments; N.N.Sh., A.A.T., V.V.S., I.P.Sh., and S.M.A. discussed the results.

Corresponding author

Correspondence to Sergey M. Andreev.

Ethics declarations

This work does not contain studies involving human and animal subjects. The authors of this article declare no conflict of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatilov, A.A., Andreev, S.M., Shatilova, A.V. et al. Synthesis and Biological Properties of Polyphenol-Containing Linear and Dendrimeric Cationic Peptides. Biochemistry Moscow 89, 173–183 (2024). https://doi.org/10.1134/S0006297924010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010115

Keywords

Navigation