Skip to main content
Log in

Influence of Nucleotide Context on Non-Specific Amplification of DNA with Bst exo DNA Polymerase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Isothermal nucleic acids amplification that requires DNA polymerases with strand-displacement activity gained more attention in the last two decades. Among the DNA polymerases with strand-displacement activity, Bst exo is the most widely used. However, it tends to carry out nonspecific DNA synthesis through multimerization. In this study, the effect of nucleotide sequence on the Bst exo binding with DNA and on the efficiency of multimerization initiation, are reported. Preference for binding of the “closed” form of Bst exo to the purine-rich DNA sequences, especially those containing dG at the 3′-end of the growing chain was revealed using molecular docking of the single-stranded trinucleotides (sst) and trinucleotide duplexes (dst). The data obtained in silico were confirmed in the experiments using oligonucleotide templates that differ in the structure of the 3′- and 5′-terminal motifs. It has been shown that templates with the oligopurine 3′-terminal fragment and oligopyrimidine 5′-terminal part contribute to the earlier start of multimerization. The results can be used for design of nucleotide sequences suitable for reliable isothermal amplification. To avoid multimerization, DNA templates and primers containing terminal dA and/or dG nucleotides should be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

dst:

double-stranded trinucleotide

LID:

ligand interaction diagram

LT:

linear template

MM:

multimerization

NA:

nucleic acids

sb:

ionic bonds (salt bridges)

sst:

single-stranded trinucleotide

References

  1. Bodulev, O. L., and Sakharov, I. Y. (2020) Isothermal nucleic acid amplification techniques and their use in bioanalysis, Biochemistry (Moscow), 85, 147-166, https://doi.org/10.1134/S0006297920020030.

    Article  CAS  PubMed  Google Scholar 

  2. Soroka, M., Wasowicz, B., and Rymaszewska, A. (2021) Loop-mediated isothermal amplification (LAMP): the better sibling of PCR? Cells, 10, 1931, https://doi.org/10.3390/cells10081931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garafutdinov, R. R., Sakhabutdinova, A. R., Gilvanov, A. R., and Chemeris, A. V. (2021) Rolling circle amplification as a universal method for the analysis of a wide range of biological targets, Russ. J. Bioorg. Chem., 47, 1172-1189, https://doi.org/10.1134/S1068162021060078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuznetsova, A. A., Fedorova, O. S., and Kuznetsov, N. A. (2022) Structural and molecular kinetic features of activities of DNA polymerases, Int. J. Mol. Sci., 23, 6373, https://doi.org/10.3390/ijms23126373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oscorbin, I., and Filipenko, M. (2023) Bst polymerase – a humble relative of Taq polymerase, Comput. Struct. Biotechnol. J., 21, 4519-4535, https://doi.org/10.1016/j.csbj.2023.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hafner, G. J., Yang, I. C., Wolter, L. C., Stafford, M. R., and Giffard, P. M. (2001) Isothermal amplification and multimerization of DNA by Bst DNA polymerase, BioTechniques, 30, 852-886, https://doi.org/10.2144/01304rr03.

    Article  CAS  PubMed  Google Scholar 

  7. Garafutdinov, R. R., Gilvanov, A. R., and Sakhabutdinova, A. R. (2020) The influence of reaction conditions on DNA multimerization during isothermal amplification with Bst DNA polymerase, Appl. Biochem. Biotechnol., 190, 758-771, https://doi.org/10.1007/s12010-019-03127-6.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, G., Ding, X., Hu, J., Wu, W., Sun, J., and Mu, Y. (2017) Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities, Sci. Rep., 7, 13928, https://doi.org/10.1038/s41598-017-13324-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Sakhabutdinova, A. R., Kamalov, M. I., Salakhieva, D. V., Mavzyutov, A. R., and Garafutdinov, R. R. (2021) Inhibition of nonspecific polymerase activity using poly(aspartic) acid as a model anionic polyelectrolyte, Anal. Biochem., 628, 114267, https://doi.org/10.1016/j.ab.2021.114267.

    Article  CAS  PubMed  Google Scholar 

  10. Zyrina, N. V., and Antipova, V. N. (2021) Nonspecific Synthesis in the reactions of isothermal nucleic acid amplification, Biochemistry (Moscow), 86, 887-897, https://doi.org/10.1134/S0006297921070099.

    Article  CAS  PubMed  Google Scholar 

  11. Rolando, J. C., Jue, E., Barlow, J. T., and Ismagilov, R. F. (2020) Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification, Nucleic Acids Res., 48, e42, https://doi.org/10.1093/nar/gkaa099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reid, M. S., Le, X. C., and Zhang, H. (2018) Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example, Angew. Chem. Int. Ed. Engl., 57, 11856-11866, https://doi.org/10.1002/anie.201712217.

    Article  CAS  PubMed  Google Scholar 

  13. Tan, E., Erwin, B., Dames, S., Ferguson, T., Buechel, M., Irvine, B., Voelkerding, K., and Niemz, A. (2008) Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities, Biochemistry, 47, 9987-9999, https://doi.org/10.1021/bi800746p.

    Article  CAS  PubMed  Google Scholar 

  14. Qian, J., Ferguson, T. M., Shinde, D. N., Ramírez-Borrero, A. J., Hintze, A., Adami, C., and Niemz, A. (2012) Sequence dependence of isothermal DNA amplification via EXPAR, Nucleic Acids Res., 40, e87, https://doi.org/10.1093/nar/gks230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garafutdinov, R. R., Sakhabutdinova, A. R., Kupryushkin, M. S., and Pyshnyi, D. V. (2020) Prevention of DNA multimerization during isothermal amplification with Bst exoDNA polymerase, Biochimie, 168, 259-267, https://doi.org/10.1016/j.biochi.2019.11.013.

    Article  CAS  PubMed  Google Scholar 

  16. Sakhabutdinova, A. R., Mirsaeva, L. R., Oscorbin, I. P., Filipenko, M. L., and Garafutdinov, R. R. (2020) Elimination of DNA multimerization arising from isothermal amplification in the presence of Bst exo DNA polymerase, Russ. J. Bioorg. Chem., 46, 52-59, https://doi.org/10.1134/S1068162020010082.

    Article  CAS  Google Scholar 

  17. Garafutdinov, R. R., Gilvanov, A. R., Kupova, O. Y., and Sakhabutdinova, A. R. (2020) Effect of metal ions on isothermal amplification with Bst exo DNA polymerase, Int. J. Biol. Macromol., 161, 1447-1455, https://doi.org/10.1016/j.ijbiomac.2020.08.028.

    Article  CAS  PubMed  Google Scholar 

  18. Schrödinger Suite, Small-Molecule Drug Discovery Suite 2016-4, Schrödinger, LLC, New York, 2016.

  19. Garafutdinov, R. R., Kupova, O. Y., and Sakhabutdinova, A. R. (2020) Data on molecular docking simulations of quaternary complexes 'Bst exo polymerase-DNA-dCTP-metal cations', Data-in-Brief, 33, 106549, https://doi.org/10.1016/j.dib.2020.106549.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2016.

  21. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., and Sherman, W. (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aid. Mol. Des., 27, 221-234, https://doi.org/10.1007/s10822-013-9644-8.

    Article  CAS  Google Scholar 

  22. Wu, E. Y., and Beese, L. S. (2011) The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an “ajar” intermediate conformation in the nucleotide selection mechanism, J. Biol. Chem., 286, 19758-19767, https://doi.org/10.1074/jbc.M110.191130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knorre, D. G., Lavrik, O. I., and Nevinsky, G. A. (1988) Protein-nucleic acid interaction in reactions catalyzed with DNA polymerases, Biochimie, 70, 655-661, https://doi.org/10.1016/0300-9084(88)90250-7.

    Article  CAS  PubMed  Google Scholar 

  24. Kolocheva, T. I., Nevinsky, G. A., Levina, A. S., Khomov, V. V., and Lavrik, O. I. (1991) The mechanism of recognition of templates by DNA polymerases from pro- and eukaryotes as revealed by affinity modification data, J. Biomol. Struct. Dyn., 9, 169-186, https://doi.org/10.1080/07391102.1991.10507901.

    Article  CAS  PubMed  Google Scholar 

  25. Doronin, S. V., Nevinsky, G. A., Malygina, T. O., Podust, V. N., Khomov, V. V., and Lavrik, O. I. (1989) The efficiency of interaction of deoxyribonucleoside-5'-mono-, di- and triphosphates with the active center of E. coli DNA polymerase I Klenow fragment, FEBS Lett., 259, 83-85, https://doi.org/10.1016/0014-5793(89)81500-5.

    Article  CAS  PubMed  Google Scholar 

  26. Kolocheva, T. I., Nevinsky, G. A., Volchkova, V. A., Levina, A. S., Khomov, V. V., and Lavrik, O. I. (1989) DNA polymerase I (Klenow fragment): role of the structure and length of a template in enzyme recognition, FEBS Lett., 248, 97-100, https://doi.org/10.1016/0014-5793(89)80439-9.

    Article  CAS  PubMed  Google Scholar 

  27. Garafutdinov, R. R., Burkhanova, G. F., Maksimov, I. V., Sakhabutdinova, A. R. (2023) New method for microRNA detection based on multimerization, Anal. Biochem., 664, 115049, https://doi.org/10.1016/j.ab.2023.115049.

    Article  CAS  PubMed  Google Scholar 

  28. Sakhabutdinova, A. R., Chemeris, A. V., and Garafutdinov, R. R. (2023) Detection of specific RNA targets by multimerization, Biochemistry (Moscow), 88, 679-686, https://doi.org/10.1134/S0006297923050103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The instruments and equipment of the regional Collective Use Centers “Agidel” and “Biomics” were used in the study.

Funding

This work was supported by the Russian Science Foundation (project no. 22-24-00235).

Author information

Authors and Affiliations

Authors

Contributions

R.R.G. planned experiments, supervised the study, and edited the manuscript. O.Yu.K. planned and performed in silico experiments, discussed the results. A.R.S. planned and performed experiments, discussed the results, and prepared the manuscript.

Corresponding author

Correspondence to Ravil R. Garafutdinov.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garafutdinov, R.R., Kupova, O.Y. & Sakhabutdinova, A.R. Influence of Nucleotide Context on Non-Specific Amplification of DNA with Bst exo DNA Polymerase. Biochemistry Moscow 89, 53–64 (2024). https://doi.org/10.1134/S0006297924010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010036

Keywords

Navigation