Skip to main content
Log in

Synthetic Activators of Autophagy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Autophagy is a central process for degradation of intracellular components that do not operate correctly. Molecular mechanisms underlying this process are extremely difficult to study, since they involve a large number of participants. The main task of autophagy is redistribution of cellular resources in response to environmental changes, such as starvation. Recent studies show that autophagy regulation could be the key to achieve healthy longevity, as well as to create therapeutic agents for treatment of neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases. Thus, development of autophagy activators with established detailed mechanism of action is a really important area of research. Several commercial companies are at various stages of development of such molecules, and some of them have already begun to introduce autophagy activators to the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Abbreviations

Akt:

RAC-α serine/threonine protein kinase

AMPK:

AMP-activated protein kinase

BECN1:

beclin-1

FCCP:

carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone

FDA:

US Food and Drug Administration

LC3:

microtubule-associated protein light chain 3

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mTOR:

mammalian target of rapamycin

mTORC1:

mammalian target of rapamycin complex 1

p62/SQSTM1:

sequestosome 1

PI3K:

phosphatidylinositol-3-kinase

PIK3C3:

phosphatidylinositol 3-kinase catalytic subunit type 3

PINK1:

PTEN-induced protein kinase 1

PPAR:

peroxisome proliferator-activated receptors

ROS:

reactive oxygen species

SIRT1:

sirtuin 1

TFEB:

transcription factor EB

ULK1:

unc-51-like autophagy-activating kinase 1

References

  1. Pierzynowska, K., Gaffke, L., Cyske, Z., Puchalski, M., Rintz, E., Bartkowski, M., et al. (2018) Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases, Metab. Brain. Dis., 33, 989-1008, https://doi.org/10.1007/s11011-018-0214-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, 402, 672-676, https://doi.org/10.1038/45257.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Marinković, M., Šprung, M., Buljubašić, M., and Novak, I. (2018) Autophagy modulation in cancer: current knowledge on action and therapy, Oxid. Med. Cell Longev., 2018, 8023821, https://doi.org/10.1155/2018/8023821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell, G. R., and Spector, S. A. (2012) Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy, PLoS Pathog., 8, e1002689, https://doi.org/10.1371/journal.ppat.1002689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie, Z., Lau, K., Eby, B., Lozano, P., He, C., Pennington, B., et al. (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice, Diabetes, 60, 1770-1778, https://doi.org/10.2337/db10-0351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, B., Yang, Q., Sun, Y., Xing, Y., Wang, Y., Lu, X., et al. (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice, J. Cell Mol. Med., 18, 1599-1611, https://doi.org/10.1111/jcmm.12312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Georgakopoulos, N. D., Wells, G., and Campanella, M. (2017) The pharmacological regulation of cellular mitophagy, Nat. Chem. Biol., 13, 136-146, https://doi.org/10.1038/nchembio.2287.

    Article  CAS  PubMed  Google Scholar 

  8. Bravo-San Pedro, J. M., Kroemer, G., and Galluzzi, L. (2017) Autophagy and mitophagy in cardiovascular disease, Circ. Res., 120, 1812-1824, https://doi.org/10.1161/CIRCRESAHA.117.311082.

    Article  CAS  PubMed  Google Scholar 

  9. WHO (2020) The top 10 causes of death, World Health Organization, URL: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

  10. Pavlova, J. A., Guseva, E. A., Dontsova, O. A., and Sergiev, P. V. (2024) Natural activators of autophagy, Biochemistry (Moscow), 89, 1-26, doi:  https://doi.org/10.1134/S0006297924010012.

    Article  Google Scholar 

  11. Levine, B., Packer, M., and Codogno, P. (2015) Development of autophagy inducers in clinical medicine, J. Clin. Invest., 125, 14-24, https://doi.org/10.1172/JCI73938.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Russo, M., and Russo, G. L. (2018) Autophagy inducers in cancer, Biochem. Pharmacol., 153, 51-61, https://doi.org/10.1016/j.bcp.2018.02.007.

    Article  CAS  PubMed  Google Scholar 

  13. Handschin, C., and Spiegelman, B. M. (2008) The role of exercise and PGC1alpha in inflammation and chronic disease, Nature, 454, 463-469, https://doi.org/10.1038/nature07206.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Varady, K. A., and Hellerstein, M. K. (2007) Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 86, 7-13, https://doi.org/10.1093/ajcn/86.1.7.

    Article  CAS  PubMed  Google Scholar 

  15. Werner, E. A., and Bell, J. (1922) CCXIV. – The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively, J. Chem. Soc. Trans., 121, 1790-1794, https://doi.org/10.1039/CT9222101790.

    Article  CAS  Google Scholar 

  16. Cerezo, M., Tichet, M., Abbe, P., Ohanna, M., Lehraiki, A., Rouaud, F., et al. (2013) Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner, Mol. Cancer. Ther., 12, 1605-1615, https://doi.org/10.1158/1535-7163.MCT-12-1226-T.

    Article  CAS  PubMed  Google Scholar 

  17. Hur, K. Y., and Lee, M.-S. (2015) New mechanisms of metformin action: focusing on mitochondria and the gut, J. Diabetes Invest., 6, 600-609, https://doi.org/10.1111/jdi.12328.

    Article  CAS  Google Scholar 

  18. Viollet, B., Guigas, B., Sanz Garcia, N., Leclerc, J., Foretz, M., and Andreelli, F. (2012) Cellular and molecular mechanisms of metformin: an overview, Clin. Sci. (Lond)., 122, 253-270, https://doi.org/10.1042/CS20110386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diamanti-Kandarakis, E., Economou, F., Palimeri, S., and Christakou, C. (2010) Metformin in polycystic ovary syndrome, Ann. N. Y. Acad. Sci., 1205, 192-198, https://doi.org/10.1111/j.1749-6632.2010.05679.x.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Tomic, T., Botton, T., Cerezo, M., Robert, G., Luciano, F., Puissant, A., et al. (2011) Metformin inhibits melanoma development through autophagy and apoptosis mechanisms, Cell Death Dis., 2, e199, https://doi.org/10.1038/cddis.2011.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, G., Liu, H., Xue, T., Kong, X., Tian, D., Luo, L., et al. (2023) Ribavirin extends the lifespan of Caenorhabditis elegans through AMPK-TOR signaling, Eur. J. Pharmacol., 946, 175548, https://doi.org/10.1016/j.ejphar.2023.175548.

    Article  CAS  PubMed  Google Scholar 

  22. Jhou, A.-J., Chang, H.-C., Hung, C.-C., Lin, H.-C., Lee, Y.-C., Liu, W., et al. (2021) Chlorpromazine, an antipsychotic agent, induces G2/ M phase arrest and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral cancer, Biochem. Pharmacol., 184, 114403, https://doi.org/10.1016/j.bcp.2020.114403.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, C., Yang, Z., Zhang, J., Li, O., Liu, S., Cai, C., et al. (2022) Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway, J. Transl. Med., 20, 434, https://doi.org/10.1186/s12967-022-03635-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, J., Sha, J., Strong, E., Chopra, A. K., and Lee, S. (2022) FDA-approved amoxapine effectively promotes macrophage control of mycobacteria by inducing autophagy, Microbiol. Spectr., 10, e02509-22, https://doi.org/10.1128/spectrum.02509-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takla, M., Keshri, S., and Rubinsztein, D. C. (2023) The post-translational regulation of transcription factor EB (TFEB) in health and disease, EMBO Rep., 24, e57574, https://doi.org/10.15252/embr.202357574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chauhan, S., Ahmed, Z., Bradfute, S. B., Arko-Mensah, J., Mandell, M. A., Won Choi, S., et al. (2015) Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential, Nat. Commun., 6, 8620, https://doi.org/10.1038/ncomms9620.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Gu, Y., Chen, T., Li, G., Xu, C., Xu, Z., Zhang, J., et al. (2017) Lower Beclin 1 downregulates HER2 expression to enhance tamoxifen sensitivity and predicts a favorable outcome for ER positive breast cancer, Oncotarget, 8, 52156-52177, https://doi.org/10.18632/oncotarget.11044.

    Article  PubMed  Google Scholar 

  28. Wu, Q., and Sharma, D. (2023) Autophagy and breast cancer: connected in growth, progression, and therapy, Cells, 12, 1156, https://doi.org/10.3390/cells12081156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen, P.-W., Chou, Y.-M., Li, C.-L., Liao, E.-C., Huang, H.-S., Yin, C.-H., et al. (2021) Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression, Oncol. Lett., 22, 768, https://doi.org/10.3892/ol.2021.13029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, H.-W., and Lee, J. H. (2014) Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies, Autophagy, 10, 2385-2386, https://doi.org/10.4161/15548627.2014.984268.

    Article  CAS  PubMed  Google Scholar 

  31. Kalonia, H., Kumar, P., and Kumar, A. (2011) Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats, Brain Res., 1372, 115-126, https://doi.org/10.1016/j.brainres.2010.11.060.

    Article  CAS  PubMed  Google Scholar 

  32. Miller, R. G., Smith, S. A., Murphy, J. R., Brinkmann, J. R., Graves, J., Mendoza, M., et al. (1996) A clinical trial of verapamil in amyotrophic lateral sclerosis, Muscle Nerve, 19, 511-515, https://doi.org/10.1002/mus.880190405.

    Article  CAS  PubMed  Google Scholar 

  33. Sarkar, S., Floto, R. A., Berger, Z., Imarisio, S., Cordenier, A., Pasco, M., et al. (2005) Lithium induces autophagy by inhibiting inositol monophosphatase, J. Cell Biol., 170, 1101-1111, https://doi.org/10.1083/jcb.200504035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu, J., Shao, C.-J., Chen, F.-R., Ng, H.-K., and Chen, Z.-P. (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines, Neuro. Oncol., 12, 328-340, https://doi.org/10.1093/neuonc/nop005.

    Article  CAS  PubMed  Google Scholar 

  35. Xia, Q., Zheng, Y., Jiang, W., Huang, Z., Wang, M., Rodriguez, R., et al. (2016) Valproic acid induces autophagy by suppressing the Akt/mTOR pathway in human prostate cancer cells, Oncol. Lett., 12, 1826-1832, https://doi.org/10.3892/ol.2016.4880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarkar, S., Krishna, G., Imarisio, S., Saiki, S., O’Kane, C. J., and Rubinsztein, D. C. (2008) A rational mechanism for combination treatment of Huntington’ s disease using lithium and rapamycin, Hum. Mol. Genet., 17, 170-178, https://doi.org/10.1093/hmg/ddm294.

    Article  CAS  PubMed  Google Scholar 

  37. Murphy, R., and Freedman, J. E. (2001) Morphine and clonidine activate different K+ channels on rat amygdala neurons, Eur. J. Pharmacol., 415, R1-R3, https://doi.org/10.1016/s0014-2999(01)00797-x.

    Article  CAS  PubMed  Google Scholar 

  38. Lopez, A., Lee, S. E., Wojta, K., Ramos, E. M., Klein, E., Chen, J., et al. (2017) A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction, Brain, 140, 1128-1146, https://doi.org/10.1093/brain/awx005.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jung, H.-J., Seo, I., Jha, B. K., Suh, S.-I., and Baek, W.-K. (2021) Miconazole induces autophagic death in glioblastoma cells via reactive oxygen species-mediated endoplasmic reticulum stress, Oncol. Lett., 21, 335, https://doi.org/10.3892/ol.2021.12596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prajapat, S. K., Subramani, C., Sharma, P., Vrati, S., and Kalia, M. (2022) Avobenzone, Guaiazulene and Tioxolone identified as potent autophagy inducers in a high-throughput image based screen for autophagy flux, Autophagy Rep., 1, 523-536, https://doi.org/10.1080/27694127.2022.2132075.

    Article  CAS  Google Scholar 

  41. Yang, C., Lim, W., Bazer, F. W., and Song, G. (2018) Avobenzone suppresses proliferative activity of human trophoblast cells and induces apoptosis mediated by mitochondrial disruption, Reproductive Toxicol., 81, 50-57, https://doi.org/10.1016/j.reprotox.2018.07.003.

    Article  CAS  Google Scholar 

  42. Staatz, C. E., and Tett, S. E. (2004) Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation, Clin. Pharmacokinetics, 43, 623-653, https://doi.org/10.2165/00003088-200443100-00001.

    Article  CAS  Google Scholar 

  43. Nakagaki, T., Satoh, K., Ishibashi, D., Fuse, T., Sano, K., Kamatari, Y. O., et al. (2013) FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice, Autophagy, 9, 1386-1394, https://doi.org/10.4161/auto.25381.

    Article  CAS  PubMed  Google Scholar 

  44. Park, K., Sonn, S. K., Seo, S., Kim, J., Hur, K. Y., Oh, G. T., et al. (2023) Impaired TFEB activation and mitophagy as a cause of PPP3/calcineurin inhibitor-induced pancreatic β-cell dysfunction, Autophagy, 19, 1444-1458, https://doi.org/10.1080/15548627.2022.2132686.

    Article  CAS  PubMed  Google Scholar 

  45. Motawi, T. K., Al-Kady, R. H., Senousy, M. A., and Abdelraouf, S. M. (2023) Repaglinide elicits a neuroprotective effect in rotenone-induced Parkinson’ s disease in rats: emphasis on targeting the DREAM-ER stress BiP/ATF6/CHOP trajectory and activation of mitophagy, ACS Chem. Neurosci., 14, 180-194, https://doi.org/10.1021/acschemneuro.2c00656.

    Article  CAS  PubMed  Google Scholar 

  46. Iacano, A. J., Lewis, H., Hazen, J. E., Andro, H., Smith, J. D., and Gulshan, K. (2019) Miltefosine increases macrophage cholesterol release and inhibits NLRP3-inflammasome assembly and IL-1β release, Sci. Rep., 9, 11128, https://doi.org/10.1038/s41598-019-47610-w.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Moskal, N., and McQuibban, G. A. (2023) From jeopardy champion to drug discovery; semantic similarity artificial intelligence, Autophagy, https://doi.org/10.1080/15548627.2023.2210995.

    Article  PubMed  Google Scholar 

  48. Moskal, N., Visanji, N. P., Gorbenko, O., Narasimhan, V., Tyrrell, H., Nash, J., et al. (2023) An AI-guided screen identifies probucol as an enhancer of mitophagy through modulation of lipid droplets, PLoS Biol., 21, e3001977, https://doi.org/10.1371/journal.pbio.3001977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, C., and Paw, B. H. (2012) Cellular and mitochondrial iron homeostasis in vertebrates, Biochim. Biophys. Acta, 1823, 1459-1467, https://doi.org/10.1016/j.bbamcr.2012.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Allen, G. F. G., Toth, R., James, J., and Ganley, I. G. (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy, EMBO Rep., 14, 1127-1135, https://doi.org/10.1038/embor.2013.168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McWilliams, T. G., Prescott, A. R., Montava-Garriga, L., Ball, G., Singh, F., Barini, E., et al. (2018) Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand, Cell Metab., 27, 439-449.e5, https://doi.org/10.1016/j.cmet.2017.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagi, M., Tanabe, K., Nakayama, H., Ueno, K., Yamagoe, S., Umeyama, T., et al. (2016) Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata, Autophagy, 12, 1259-1271, https://doi.org/10.1080/15548627.2016.1183080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V., et al. (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans, Curr. Biol., 25, 1810-1822, https://doi.org/10.1016/j.cub.2015.05.059.

    Article  CAS  PubMed  Google Scholar 

  54. Hara, Y., Yanatori, I., Tanaka, A., Kishi, F., Lemasters, J. J., Nishina, S., et al. (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin, EMBO Rep., 21, e50202, https://doi.org/10.15252/embr.202050202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H. I., Campbell, D. G., Gourlay, R., et al. (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biol., 2, 120080, https://doi.org/10.1098/rsob.120080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Savulescu, J. (2004) Thalassaemia major: the murky story of deferiprone, BMJ, 328, 358-359, https://doi.org/10.1136/bmj.328.7436.358.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lyamzaev, K. G., Tokarchuk, A. V., Panteleeva, A. A., Mulkidjanian, A. Y., Skulachev, V. P., and Chernyak, B. V. (2018) Induction of autophagy by depolarization of mitochondria, Autophagy, 14, 921-924, https://doi.org/10.1080/15548627.2018.1436937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Benjamin, D., Colombi, M., Moroni, C., and Hall, M. N. (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors, Nat. Rev. Drug Discov., 10, 868-880, https://doi.org/10.1038/nrd3531.

    Article  CAS  PubMed  Google Scholar 

  59. Huang, S., Yang, Z. J., Yu, C., and Sinicrope, F. A. (2011) Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1, J. Biol. Chem., 286, 40002-40012, https://doi.org/10.1074/jbc.M111.297432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, X., Li, Z., Song, Y., Liu, W., and Liu, Z. (2018) The mTOR kinase inhibitor CZ415 inhibits human papillary thyroid carcinoma cell growth, Cell Physiol. Biochem., 46, 579-590, https://doi.org/10.1159/000488625.

    Article  CAS  PubMed  Google Scholar 

  61. Xie, J., Li, Q., Ding, X., and Gao, Y. (2018) Targeting mTOR by CZ415 Inhibits Head and Neck Squamous Cell Carcinoma Cells, Cell. Physiol. Biochem., 46, 676-686, https://doi.org/10.1159/000488724.

    Article  CAS  PubMed  Google Scholar 

  62. Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1, J. Biol. Chem., 284, 8023-8032, https://doi.org/10.1074/jbc.M900301200.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., et al. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2, PLoS Biol., 7, e38, https://doi.org/10.1371/journal.pbio.1000038.

    Article  CAS  PubMed  Google Scholar 

  64. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, 8, 445-544, https://doi.org/10.4161/auto.19496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chung, C. Y.-S., Shin, H. R., Berdan, C. A., Ford, B., Ward, C. C., Olzmann, J. A., et al. (2019) Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition, Nat. Chem. Biol., 15, 776-785, https://doi.org/10.1038/s41589-019-0308-4.

    Article  CAS  PubMed  Google Scholar 

  66. Floto, R. A., Sarkar, S., Perlstein, E. O., Kampmann, B., Schreiber, S. L., and Rubinsztein, D. C. (2007) Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’ s disease models and enhance killing of mycobacteria by macrophages, Autophagy, 3, 620-622, https://doi.org/10.4161/auto.4898.

    Article  CAS  PubMed  Google Scholar 

  67. Seidel, K., Siswanto, S., Fredrich, M., Bouzrou, M., Brunt, E. R., van Leeuwen, F. W., et al. (2016) Polyglutamine aggregation in Huntington’ s disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation, Neuropathol. Appl. Neurobiol., 42, 153-166, https://doi.org/10.1111/nan.12253.

    Article  CAS  PubMed  Google Scholar 

  68. Kovács, T., Billes, V., Komlós, M., Hotzi, B., Manzéger, A., Tarnóci, A., et al. (2017) The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms, Sci. Rep., 7, 42014, https://doi.org/10.1038/srep42014.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Long, J., Luo, X., Fang, D., Song, H., Fang, W., Shan, H., et al. (2022) Discovery of an autophagy inducer J3 to lower mutant huntingtin and alleviate Huntington’ s disease-related phenotype, Cell Biosci., 12, 167, https://doi.org/10.1186/s13578-022-00906-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, M., Zeng, M., Pan, Z., Wu, F., Guo, L., and He, G. (2020) Discovery of novel akt1 inhibitor induces autophagy associated death in hepatocellular carcinoma cells, Eur. J. Med. Chem., 189, 112076, https://doi.org/10.1016/j.ejmech.2020.112076.

    Article  CAS  PubMed  Google Scholar 

  71. Du, Y., Wang, H. L., Zhao, S.-Hu., and Zhang, X.-J. (2022) Discovery a novel hybrid with resveratrol and hans ester derivatives as activators induce autophagic cell death in tumoral NCI-H460 cells through production of ROS, Res. Sq., 10, https://doi.org/10.21203/rs.3.rs-1329819/v1.

    Article  Google Scholar 

  72. Hafez, H. N., Abbas, H.-A. S., and El-Gazzar, A.-R. B. A. (2008) Synthesis and evaluation of analgesic, anti-inflammatory and ulcerogenic activities of some triazolo- and 2-pyrazolyl-pyrido[2,3-d]-pyrimidines, Acta Pharm., 58, 359-378, https://doi.org/10.2478/v10007-008-0024-1.

    Article  CAS  PubMed  Google Scholar 

  73. Sayed, H. H., Morsy, E. M. H., and Flefel, E. M. (2010) Synthesis and reactions of some novel Nicotinonitrile, Thiazolotriazole, and Imidazolotriazole derivatives for antioxidant evaluation, Synthetic Commun., 40, 1360-1370, https://doi.org/10.1080/00397910903079631.

    Article  CAS  Google Scholar 

  74. Hsieh, C.-Y., Li, L.-H., Lam, Y., Fang, Z., Gan, C. H., Rao, Y. K., et al. (2020) Synthetic 4-hydroxy Auxarconjugatin B, a novel autophagy inducer, attenuates gouty inflammation by inhibiting the NLRP3 inflammasome, Cells, 9, E279, https://doi.org/10.3390/cells9020279.

    Article  CAS  Google Scholar 

  75. Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., et al. (2019) Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress, Int. J. Mol. Med., 43, 2033-2043, https://doi.org/10.3892/ijmm.2019.4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, T., Hu, Y., He, W., Shang, Y., Yang, X., Gong, L., et al. (2020) SRT2183 impairs ovarian cancer by facilitating autophagy, Aging (Albany NY), 12, 24208-24218, https://doi.org/10.18632/aging.104126.

    Article  CAS  PubMed  Google Scholar 

  77. Kim, M. J., Kang, Y. J., Sung, B., Jang, J. Y., Ahn, Y. R., Oh, H. J., et al. (2020) Novel SIRT inhibitor, MHY2256, induces cell cycle arrest, apoptosis, and autophagic cell death in HCT116 human colorectal cancer cells, Biomol. Ther. (Seoul), 28, 561-568, https://doi.org/10.4062/biomolther.2020.153.

    Article  CAS  PubMed  Google Scholar 

  78. Viana, R., Aguado, C., Esteban, I., Moreno, D., Viollet, B., Knecht, E., et al. (2008) Role of AMP-activated protein kinase in autophagy and proteasome function, Biochem. Biophys. Res. Commun., 369, 964-968, https://doi.org/10.1016/j.bbrc.2008.02.126.

    Article  CAS  PubMed  Google Scholar 

  79. Jaune, E., Cavazza, E., Ronco, C., Grytsai, O., Abbe, P., Tekaya, N., et al. (2021) Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies, Cell Death Dis., 12, 64, https://doi.org/10.1038/s41419-020-03344-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pasquier, B. (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells, Autophagy, 11, 725-726, https://doi.org/10.1080/15548627.2015.1033601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, L., Fu, L., Zhang, S., Zhang, J., Zhao, Y., Zheng, Y., et al. (2017) Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo, Chem. Sci., 8, 2687-2701, https://doi.org/10.1039/c6sc05368h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu, Z., Liu, L.-F., Su, C.-F., Liu, J., Tong, B. C.-K., Iyaswamy, A., et al. (2022) Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy, Acta Pharmacol. Sin., 43, 2511-2526, https://doi.org/10.1038/s41401-022-00871-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qiao, C.-M., Sun, M.-F., Jia, X.-B., Shi, Y., Zhang, B.-P., Zhou, Z.-L., et al. (2020) Sodium butyrate causes α-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway, Exp. Cell Res., 387, 111772, https://doi.org/10.1016/j.yexcr.2019.111772.

    Article  CAS  PubMed  Google Scholar 

  84. Tang, Y., Chen, Y., Jiang, H., and Nie, D. (2011) Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death, Cell Death Differ., 18, 602-618, https://doi.org/10.1038/cdd.2010.117.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, J., Yi, M., Zha, L., Chen, S., Li, Z., Li, C., et al. (2016) Sodium butyrate induces endoplasmic reticulum stress and autophagy in colorectal cells: implications for apoptosis, PLoS One, 11, e0147218, https://doi.org/10.1371/journal.pone.0147218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pant, K., Saraya, A., and Venugopal, S. K. (2017) Oxidative stress plays a key role in butyrate-mediated autophagy via Akt/mTOR pathway in hepatoma cells, Chem. Biol. Interact., 273, 99-106, https://doi.org/10.1016/j.cbi.2017.06.001.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, C., Li, L., Li, T., Sun, L., Yin, J., Guan, H., et al. (2020) SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α, J. Mol. Med. (Berl), 98, 1189-1202, https://doi.org/10.1007/s00109-020-01947-2.

    Article  CAS  PubMed  Google Scholar 

  88. Engevik, M. A., Luk, B., Chang-Graham, A. L., Hall, A., Herrmann, B., Ruan, W., et al. (2019) Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways, mBio, 10, e01087-19, https://doi.org/10.1128/mBio.01087-19.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schulthess, J., Pandey, S., Capitani, M., Rue-Albrecht, K. C., Arnold, I., Franchini, F., et al. (2019) The short chain fatty acid butyrate imprints an antimicrobial program in macrophages, Immunity, 50, 432-445.e7, https://doi.org/10.1016/j.immuni.2018.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Levine, B., Sinha, S. C., and Kroemer, G. (2008) Bcl-2 family members: Dual regulators of apoptosis and autophagy, Autophagy, 4, 600-606, https://doi.org/10.4161/auto.6260.

    Article  CAS  PubMed  Google Scholar 

  91. Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J.-C., Gautier, F., Juin, P., et al. (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1, EMBO J., 26, 2527-2539, https://doi.org/10.1038/sj.emboj.7601689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Escariba Ruiz, P. V., Busquetes Xaubet, X., Teres Jimenez, S., Barcelo Coblijn, G., Llado Canellas, V., Marcilla Etxenike, A., et al. (2010) Patent: Use of derevatives of polyunsaturated fatty acids as medicaments, WO2010106211, 23.09.2010.

  93. Erazo, T., Lorente, M., López-Plana, A., Muñoz-Guardiola, P., Fernández-Nogueira, P., García-Martínez, J. A., et al. (2016) The new antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by upregulating Tribbles-3 pseudokinase, Clin. Cancer Res., 22, 2508-2519, https://doi.org/10.1158/1078-0432.CCR-15-1808.

    Article  CAS  PubMed  Google Scholar 

  94. Bhagat, V., and Verchere, C. B. (2023) A small molecule improves diabetes in mice expressing human islet amyloid polypeptide, Islets, 15, 12-15, https://doi.org/10.1080/19382014.2022.2163829.

    Article  CAS  PubMed  Google Scholar 

  95. Kataura, T., Tashiro, E., Nishikawa, S., Shibahara, K., Muraoka, Y., Miura, M., et al. (2021) A chemical genomics-aggrephagy integrated method studying functional analysis of autophagy inducers, Autophagy, 17, 1856-1872, https://doi.org/10.1080/15548627.2020.1794590.

    Article  CAS  PubMed  Google Scholar 

  96. Han, S. and Lee, J.-H. (2020) Novel catechol derivatives or salt thereof, processes for preparing the same, and pharmaceutical compositions comprising the same. Patent: WO2020017878A1, 23.01.2020.

  97. Suresh, S. N., Chavalmane, A. K., Pillai, M., Ammanathan, V., Vidyadhara, D. J., Yarreiphang, H., et al. (2018) Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective, Front. Mol. Neurosci., 11, 109, https://doi.org/10.3389/fnmol.2018.00109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ganesher, A., Chaturvedi, P., Sahai, R., Meena, S., Mitra, K., Datta, D., et al. (2020) New Spisulosine Derivative promotes robust autophagic response to cancer cells, Eur. J. Med. Chem., 188, 112011, https://doi.org/10.1016/j.ejmech.2019.112011.

    Article  CAS  PubMed  Google Scholar 

  99. Kim, S.-J., Devgan, A., Miller, B., Lee, S. M., Kumagai, H., Wilson, K. A., et al. (2022) Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension, Biochim. Biophys. Acta Gen. Subj., 1866, 130017, https://doi.org/10.1016/j.bbagen.2021.130017.

    Article  CAS  PubMed  Google Scholar 

  100. Maestro, I., de la Ballina, L. R., Simonsen, A., Boya, P., and Martinez, A. (2021) Phenotypic assay leads to discovery of mitophagy inducers with therapeutic potential for Parkinson’ s disease, ACS Chem. Neurosci., 12, 4512-4523, https://doi.org/10.1021/acschemneuro.1c00529.

    Article  CAS  PubMed  Google Scholar 

  101. Palomo, V., Perez, D. I., Roca, C., Anderson, C., Rodríguez-Muela, N., Perez, C., et al. (2017) Subtly modulating glycogen synthase kinase 3 β: allosteric inhibitor development and their potential for the treatment of chronic diseases, J. Med. Chem., 60, 4983-5001, https://doi.org/10.1021/acs.jmedchem.7b00395.

    Article  CAS  PubMed  Google Scholar 

  102. Mehellou, Y. (2023) Parkinson’ s disease: Are PINK1 activators inching closer to the clinic? ACS Med. Chem. Lett., 14, 870-874, https://doi.org/10.1021/acsmedchemlett.3c00070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chin, R. M., Rakhit, R., Ditsworth, D., Wang, C., Bartholomeus, J., Liu, S., et al. (2023) Pharmacological PINK1 activation ameliorates pathology in Parkinson’s disease models, bioRxiv, https://doi.org/10.1101/2023.02.14.528378.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cen, X., Xu, X., and Xia, H. (2021) Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease, Autophagy, 17, 818-819, https://doi.org/10.1080/15548627.2020.1860542.

    Article  CAS  PubMed  Google Scholar 

  105. Gatliff, J., East, D., Crosby, J., Abeti, R., Harvey, R., Craigen, W., et al. (2014) TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control, Autophagy, 10, 2279-2296, https://doi.org/10.4161/15548627.2014.991665.

    Article  CAS  PubMed  Google Scholar 

  106. Narendra, D., Tanaka, A., Suen, D.-F., and Youle, R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell. Biol., 183, 795-803, https://doi.org/10.1083/jcb.200809125.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., and Youle, R. J. (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, 6, 1090-1106, https://doi.org/10.4161/auto.6.8.13426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Y., Nartiss, Y., Steipe, B., McQuibban, G. A., and Kim, P. K. (2012) ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy, Autophagy, 8, 1462-1476, https://doi.org/10.4161/auto.21211.

    Article  CAS  PubMed  Google Scholar 

  109. Kenwood, B. M., Weaver, J. L., Bajwa, A., Poon, I. K., Byrne, F. L., Murrow, B. A., et al. (2014) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane, Mol. Metab., 3, 114-123, https://doi.org/10.1016/j.molmet.2013.11.005.

    Article  CAS  PubMed  Google Scholar 

  110. Chu, C. T., Ji, J., Dagda, R. K., Jiang, J. F., Tyurina, Y. Y., Kapralov, A. A., et al. (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nat. Cell. Biol., 15, 1197-1205, https://doi.org/10.1038/ncb2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dagda, R. K., Zhu, J., Kulich, S. M., and Chu, C. T. (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’ s disease, Autophagy, 4, 770-782, https://doi.org/10.4161/auto.6458.

    Article  CAS  PubMed  Google Scholar 

  112. Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans, Nature, 521, 525-528, https://doi.org/10.1038/nature14300.

    Article  CAS  PubMed  ADS  Google Scholar 

  113. Zhu, J. H., Gusdon, A. M., Cimen, H., Van Houten, B., Koc, E., and Chu, C. T. (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2, Cell Death Dis., 3, e312, https://doi.org/10.1038/cddis.2012.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hoshino, A., Ariyoshi, M., Okawa, Y., Kaimoto, S., Uchihashi, M., Fukai, K., et al. (2014) Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes, Proc. Natl. Acad. Sci. USA, 111, 3116-3121, https://doi.org/10.1073/pnas.1318951111.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., et al. (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart, Nat. Commun., 4, 2308, https://doi.org/10.1038/ncomms3308.

    Article  CAS  PubMed  ADS  Google Scholar 

  116. Bensaad, K., Cheung, E. C., and Vousden, K. H. (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy, EMBO J., 28, 3015-3026, https://doi.org/10.1038/emboj.2009.242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. East, D. A., Fagiani, F., Crosby, J., Georgakopoulos, N. D., Bertrand, H., Schaap, M., et al. (2014) PMI: a ΔΨm independent pharmacological regulator of mitophagy, Chem. Biol., 21, 1585-1596, https://doi.org/10.1016/j.chembiol.2014.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu, S., Hu, X., Bennett, S., Xu, J., and Mai, Y. (2022) The molecular structure and role of humanin in neural and skeletal diseases, and in tissue regeneration, Front. Cell Dev. Biol., 10, 823354, https://doi.org/10.3389/fcell.2022.823354.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bosch-Barrera, J., Moran, T., Estévez-García, P., Martín-Martorell, P., Sabatier, R., Nadal, E., et al. (2023) Phase 2 clinical trial of the proautophagic drug ABTL0812 combined with paclitaxel and carboplatin in first-line patients with advanced squamous non-small cell lung carcinoma, JCO, 41, 9059-9059, https://doi.org/10.1200/JCO.2023.41.16_suppl.9059.

    Article  Google Scholar 

  120. Ji, C. H., Kim, H. Y., Lee, M. J., Heo, A. J., Park, D. Y., Lim, S., et al. (2022) The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system, Nat. Commun., 13, 904, https://doi.org/10.1038/s41467-022-28520-4.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  121. Li, Z., Zhu, C., Ding, Y., Fei, Y., and Lu, B. (2020) ATTEC: a potential new approach to target proteinopathies, Autophagy, 16, 185-187, https://doi.org/10.1080/15548627.2019.1688556.

    Article  CAS  PubMed  Google Scholar 

  122. Korolenko, T. A., Ovsyukova, M. V., Bgatova, N. P., Ivanov, I. D., Makarova, S. I., Vavilin, V. A., et al. (2022) Trehalose activates hepatic and myocardial autophagy and has anti-inflammatory effects in db/db diabetic mice, Life (Basel), 12, 442, https://doi.org/10.3390/life12030442.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Korolenko, T. A., Dubrovina, N. I., Ovsyukova, M. V., Bgatova, N. P., Tenditnik, M. V., Pupyshev, A. B., et al. (2021) Treatment with autophagy inducer trehalose alleviates memory and behavioral impairments and neuroinflammatory brain processes in db/db mice, Cells, 10, 2557, https://doi.org/10.3390/cells10102557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lipatova, A., Krasnov, G., Vorobyov, P., Melnikov, P., Alekseeva, O., Vershinina, Y., et al. (2021) Effects of Siberian fir terpenes extract Abisil on antioxidant activity, autophagy, transcriptome and proteome of human fibroblasts, Aging (Albany NY), 13, 20050-20080, https://doi.org/10.18632/aging.203448.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of research team, and to academicians A. G. Gabibov and A. A. Makarov for fruitful discussions.

Funding

This work was financially supported by EFKO company.

Author information

Authors and Affiliations

Authors

Contributions

E.A.G. and Yu.A.P. writing text of the paper, O.A.D. discussion of the material, P.V.S. concept and supervision of the study, editing text of the paper.

Corresponding authors

Correspondence to Ekaterina A. Guseva or Petr V. Sergiev.

Ethics declarations

This study was supported by the EFKO company. This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, E.A., Pavlova, J.A., Dontsova, O.A. et al. Synthetic Activators of Autophagy. Biochemistry Moscow 89, 27–52 (2024). https://doi.org/10.1134/S0006297924010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010024

Keywords

Navigation