Skip to main content
Log in

Leaf Extract from European Olive (Olea europaea L.) Post-Transcriptionally Suppresses the Epithelial-Mesenchymal Transition and Sensitizes Gastric Cancer Cells to Chemotherapy

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The overall survival of patients with the advanced and recurrent gastric cancer (GC) remains unfavorable. In particular, this is due to cancer spreading and resistance to chemotherapy associated with the epithelial-mesenchymal transition (EMT) of tumor cells. EMT can be identified by the transcriptome profiling of GC for EMT markers. Indeed, analysis of the TCGA and GTEx databases (n = 408) and a cohort of GC patients (n = 43) revealed that expression of the CDH2 gene was significantly decreased in the tumors vs. non-tumor tissues and correlated with the overall survival of GC patients. Expression of the EMT-promoting transcription factors SNAIL and ZEB1 was significantly increased in GC. These data suggest that targeting the EMT might be an attractive therapeutic approach for patients with GC. Previously, we demonstrated a potent anti-cancer activity of the olive leaf extract (OLE). However, its effect on the EMT regulation in GC remained unknown. Here, we showed that OLE efficiently potentiated the inhibitory effect of the chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (Cis) on the EMT and their pro-apoptotic activity, as was demonstrated by changes in the expression of the EMT markers (E- and N-cadherins, vimentin, claudin-1) in GC cells treated with the aforementioned chemotherapeutic agents in the presence of OLE. Thus, culturing GC cells with 5-FU + OLE or Cis + OLE attenuated the invasive properties of cancer cells. Importantly, upregulation of expression of the apoptotic markers (PARP cleaved form) and increase in the number of cells undergoing apoptosis (annexin V-positive) were observed for GC cells treated with a combination of OLE and 5-FU or Cis. Collectively, our data illustrate that OLE efficiently interferes with the EMT in GC cells and potentiates the pro-apoptotic activity of certain chemotherapeutic agents used for GC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Song, Z., Wu, Y., Yang, J., Yang, D., and Fang, X. (2017) Progress in the treatment of advanced gastric cancer, Tumour Biol., 39, 1010428317714626, https://doi.org/10.1177/1010428317714626.

    Article  CAS  PubMed  Google Scholar 

  2. Power, D. G., Kelsen, D. P., and Shah, M. A. (2010) Advanced gastric cancer--slow but steady progress, Cancer Treat. Rev., 36, 384-392, https://doi.org/10.1016/j.ctrv.2010.01.005.

    Article  PubMed  Google Scholar 

  3. Huang, L., Wu, R. L., Xu, A. M. (2015) Epithelial-mesenchymal transition in gastric cancer, Am. J. Transl. Res., 7, 2141-2158.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133, 704-715, https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Serrano-Gomez, S. J., Maziveyi, M., and Alahari, S. K. (2016) Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications, Mol. Cancer, 15, 18, https://doi.org/10.1186/s12943-016-0502-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Du, B., and Shim, J. S. (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer, Molecules, 21, 965, https://doi.org/10.3390/molecules21070965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, B., Dragomir, M. P., Yang, C., Li, Q., Horst, D., and Calin, G. A. (2022) Targeting non-coding RNAs to overcome cancer therapy resistance, Signal. Transduct. Target Ther., 7, 121, https://doi.org/10.1038/s41392-022-00975-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, N. R., Cha, J. H., Sung, P. S., Jang, J. W., Choi, J. Y., Yoon, S. K., and Bae, S. H. (2022) MiR-23b-3p suppresses epithelial-mesenchymal transition, migration, and invasion of hepatocellular carcinoma cells by targeting c-MET, Heliyon, 8, e11135, https://doi.org/10.1016/j.heliyon.2022.e11135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., Koike, J., Hemmi, H., Koi, M., Boland, C. R., and Goel, A. (2013) MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis, Gut, 62, 1315-1326, https://doi.org/10.1136/gutjnl-2011-301846.

    Article  CAS  PubMed  Google Scholar 

  10. Gollavilli, P. N., Parma, B., Siddiqui, A., Yang, H., Ramesh, V., Napoli, F., Schwab, A., Natesan, R., Mielenz, D., and Asangani, I. A. (2021) The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter, Oncogene, 40, 2309-2322, https://doi.org/10.1038/s41388-021-01708-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cragg, G. M., and Newman, D. J. (2005) Plants as a source of anti-cancer agents, J. Ethnopharmacol., 100, 72-79, https://doi.org/10.1016/j.jep.2005.05.011.

    Article  CAS  PubMed  Google Scholar 

  12. Li, J., Liu, H., Ramachandran, S., Waypa, G. B., Yin, J. J., Li, C. Q., Han, M., Huang, H. H., Sillard, W. W., Vanden Hoek, T. L., and Shao, Z. H. (2010) Grape seed proanthocyanidins ameliorate Doxorubicin-induced cardiotoxicity, Am. J. Chinese Med., 38, 569-584, https://doi.org/10.1142/S0192415X10008068.

    Article  CAS  Google Scholar 

  13. Hamdi, H. K., and Castellon, R. (2005) Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor, Biochem. Biophys. Res. Commun., 334, 769-778, https://doi.org/10.1016/j.bbrc.2005.06.161.

    Article  CAS  PubMed  Google Scholar 

  14. Ryan, D., and Robards, K. (1998) Phenolic compounds in olives, Analyst, 123, 31-44, https://doi.org/10.1039/A708920A.

    Article  Google Scholar 

  15. Mutlu, M., Tunca, B., Ak Aksoy, S., Tekin, C., Egeli, U., and Cecener, G. (2021) Inhibitory effects of Olea europaea leaf extract on mesenchymal transition mechanism in glioblastoma cells, Nutr. Cancer, 73, 713-720, https://doi.org/10.1080/01635581.2020.1765260.

    Article  CAS  PubMed  Google Scholar 

  16. Bartolí, R., Fernández-Bañares, F., Navarro, E., Castellà, E., Mañé, J., Alvarez, M., Pastor, C., Cabré, E., and Gassull, M. A. (2000) Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E(2) synthesis, Gut, 46, 191-199, https://doi.org/10.1136/gut.46.2.191.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Al-Quraishy, S., Othman, M. S., Dkhil, M. A., and Abdel Moneim, A. E. (2017) Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities, Biomed Pharmacother., 91, 338-349, https://doi.org/10.1016/j.biopha.2017.04.069.

    Article  CAS  PubMed  Google Scholar 

  18. Tekin, C., Ercelik, M., Tezcan, G., Ak Aksoy, S., Egeli, U., Cecener, G., and Tunca, B. (2022) Olea europaea leaf extract suppress stemness – characteristics of gastric cancer via long non-coding RNAs, Eur. J. Integrat. Med., 49, 102099, https://doi.org/10.1016/j.eujim.2022.102099.

    Article  Google Scholar 

  19. Tezcan, G., Tunca, B., Bekar, A., Budak, F., Sahin, S., Cecener, G., Egeli, U., Taskapılıoglu, M. O., Kocaeli, H., Tolunay, S., Malyer, H., Demir, C., and Tumen, G. (2014) Olea europaea leaf extract improves the treatment response of GBM stem cells by modulating miRNA expression, Am. J. Cancer Res., 4, 572-590.

    PubMed  PubMed Central  Google Scholar 

  20. Baj, J., Korona-Głowniak, I., Forma, A., Maani, A., Sitarz, E., Rahnama-Hezavah, M., Radzikowska, E., and Portincasa, P. (2020) Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer, Cells, 9, 1055, https://doi.org/10.3390/cells9041055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Focaccetti, C., Bruno, A., Magnani, E., Bartolini, D., Principi, E., Dallaglio, K., Bucci, E. O., Finzi, G., Sessa, F., Noonan, D. M., and Albini, A. (2015) Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes, PLoS One, 10, e0115686, https://doi.org/10.1371/journal.pone.0115686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H., and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells, Toxicol. Res., 31, 151-156, https://doi.org/10.5487/TR.2015.31.2.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ˆ(-delta delta C(T)) method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  24. Tunca, B., Tezcan, G., Cecener, G., Egeli, U., Ak, S., Malyer, H., Tumen, G., and Bilir, A. (2012) Olea europaea leaf extract alters microRNA expression in human glioblastoma cells, J. Cancer Res Clin Oncol., 138, 1831-1844, https://doi.org/10.1007/s00432-012-1261-8.

    Article  CAS  PubMed  Google Scholar 

  25. Kamiloglu, S. (2019) Effect of different freezing methods on the bioaccessibility of strawberry polyphenols, Int. J. Food Sci. Technol., 54, 2652-2660, https://doi.org/10.1111/ijfs.14249.

    Article  CAS  Google Scholar 

  26. Ercelik, M., Tekin, C., Tezcan, G., Ak Aksoy, S., Bekar, A., Kocaeli, H., Taskapilioglu, M. O., Eser, P., and Tunca, B. (2023) Olea europaea leaf phenolics oleuropein, Hydroxytyrosol, Tyrosol, and Rutin induce apoptosis and additionally affect temozolomide against glioblastoma: in particular, oleuropein inhibits spheroid growth by attenuating stem-like cell phenotype, Life (Basel), 13, 470, https://doi.org/10.3390/life13020470.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, Z. Y., Tang, J. N., Xie, H. X., Du, Y. A., Huang, L., Yu, P. F., and Cheng, X. D. (2015) 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells, Int. J. Biol. Sci., 11, 284-294, https://doi.org/10.7150/ijbs.10248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, H., Huang, S., Wei, Y., Cao, S., Pi, C., Feng, T., Liang, J., Zhao, L., and Ren, G. (2017) Curcumin enhances the anticancer effect of 5-fluorouracil against gastric cancer through down-regulation of COX-2 and NF-κB signaling pathways, J. Cancer, 8, 3697-3706, https://doi.org/10.7150/jca.20196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tao, K., Yin, Y., Shen, Q., Chen, Y., Li, R., Chang, W., Bai, J., Liu, W., Shi, L., and Zhang, P. (2016) Akt inhibitor MK-2206 enhances the effect of Cisplatin in gastric cancer cells, Biomed. Rep., 4, 365-368, https://doi.org/10.3892/br.2016.594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lei, Y., Tang, L., Hu, J., Wang, S., Liu, Y., Yang, M., Zhang, J., and Tang, B. (2020) Inhibition of MGMT-mediated autophagy suppression decreases cisplatin chemosensitivity in gastric cancer, Biomed. Pharmacother., 125, 109896, https://doi.org/10.1016/j.biopha.2020.109896.

    Article  CAS  PubMed  Google Scholar 

  31. Ianevski, A., Giri, A. K., and Aittokallio, T. (2020) SynergyFinder 2.0: visual analytics of multi-drug combination synergies, Nucleic Acids Res., 48, 488-493, https://doi.org/10.1093/nar/gkaa216.

    Article  CAS  Google Scholar 

  32. Ciapetti, G., Granchi, D., Savarino, L., Cenni, E., Magrini, E., Baldini, N., and Giunti, A. (2002) In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells, Biomaterials, 23, 617-627, https://doi.org/10.1016/s0142-9612(01)00149-1.

    Article  CAS  PubMed  Google Scholar 

  33. Anasamy, T., Abdul, A. B., Sukari, M. A., Abdelwahab, S. I., Mohan, S., Kamalidehghan, B., Azid, M. Z., Muhammad Nadzri, N., Andas, A. R., Kuan Beng, N., Hadi, A. H., and Sulaiman Rahman, H. (2013) A phenylbutenoid dimer, cis-3-(3',4'-dimethoxyphenyl)-4-[(E)-3''',4'''-dimethoxystyryl] cyclohex-1-ene, exhibits Apoptogenic properties in T-acute lymphoblastic leukemia cells via induction of p53-independent mitochondrial signalling pathway, Evid. Based Complement Alternat. Med., 93, 9810, https://doi.org/10.1155/2013/939810.

    Article  Google Scholar 

  34. Yuan, T., Ni, Z., Han, C., Min, Y., Sun, N., Liu, C., Shi, M., Lu, W., Wang, N., Du, F., Wu, Q., Xie, N., and Shi, Y. (2019) SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal metaplasia, Cancer Cell Int., 19, 24, https://doi.org/10.1186/s12935-019-0739-8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu, W., Yang, Z., and Lu, N. (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition, Cell Adh. Migr., 9, 317-324, https://doi.org/10.1080/19336918.2015.1016686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, W. (2020) Role of JAK/STAT3 Signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition, Cells, 9, 217, https://doi.org/10.3390/cells9010217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao, H., Teng, C., Huang, W., Peng, J., and Wang, C. (2015) SOX2 promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α signaling, Int. J. Mol. Sci., 16, 21643-21657, https://doi.org/10.3390/ijms160921643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaefer, T., Steiner, R., and Lengerke, C. (2020) SOX2 and p53 expression control converges in PI3K/AKT signaling with versatile implications for stemness and cancer, Int. J. Mol. Sci., 21, 4902, https://doi.org/10.3390/ijms21144902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhong, B. H., and Dong, M. (2023) The implication of ciliary signaling pathways for epithelial-mesenchymal transition, Mol. Cell Biochem., https://doi.org/10.1007/s11010-023-04817-w.

    Article  PubMed  Google Scholar 

  40. Pećina-Slaus, N. (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells, Cancer Cell Int., 3, 17, https://doi.org/10.1186/1475-2867-3-17.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malgulwar, P. B., Nambirajan, A., Pathak, P., Rajeshwari, M., Suri, V., Sarkar, C., Singh, M., and Sharma, M. C. (2018) Epithelial-to-mesenchymal transition-related transcription factors are up-regulated in ependymomas and correlate with a poor prognosis, Hum. Pathol., 82, 149-157, https://doi.org/10.1016/j.humpath.2018.07.018.

    Article  CAS  PubMed  Google Scholar 

  42. Huang, J., Fang, J., Chen, Q., Chen, J., and Shen, J. (2022) Epigenetic silencing of E-cadherin gene induced by lncRNA MALAT-1 in acute myeloid leukaemia, J. Clin. Lab. Anal., 36, e24556, https://doi.org/10.1002/jcla.24556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaleshi, V., Asadzadeh Aghdaei, H., Nourian, M., Iravani, S., Jalaeikhoo, H., Rajaeinejad, M., Khoshdel, A. R., and Naghoosi, H. (2021) Association of MALAT1 expression in gastric carcinoma and the significance of its clinicopathologic features in an Iranian patient, Gastroenterol. Hepatol. Bed Bench., 14, 108-114.

    PubMed  PubMed Central  Google Scholar 

  44. YiRen, H., YingCong, Y., Sunwu, Y., Keqin, L., Xiaochun, T., Senrui, C., Ende, C., XiZhou, L., and Yanfan, C. (2017) Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer, Mol. Cancer, 16, 174, https://doi.org/10.1186/s12943-017-0743-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, J., Sun, Z., Hu, K., Tang, M., Sun, S., Fang, Y., Yu, H., and Zhang, Y. (2020) Over-expression of Hsa-miR-23b-3p suppresses proliferation, migration, invasion and epithelial-mesenchymal transition of human cervical cancer CasKi cells [in Chinese], Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi., 36, 983-989.

    PubMed  Google Scholar 

  46. Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H., and Mori, M. (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance, Cancer Sci., 101, 293-299, https://doi.org/10.1111/j.1349-7006.2009.01419.x.

    Article  CAS  PubMed  Google Scholar 

  47. Aban, C. E., Lombardi, A., Neiman, G., Biani, M. C., La Greca, A., Waisman, A., Moro, L. N., Sevlever, G., Miriuka, S., and Luzzani, C. (2021) Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT, Sci. Rep., 11, 2048, https://doi.org/10.1038/s41598-021-81735-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, B., Chen, B., Zhu, Z., Ye, W., Zeng, J., Liu, G., Wang, S., Gao, J., Xu, G., and Huang, Z. (2019) Prognostic value of ZEB-1 in solid tumors: a meta-analysis, BMC. Cancer, 19, 635, https://doi.org/10.1186/s12885-019-5830-y.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Romero, S., Musleh, M., Bustamante, M., Stambuk, J., Pisano, R., Lanzarini, E., Chiong, H., Rojas, J., Castro, V. G., Jara, L., Berger, Z., and Gonzalez-Hormazabal, P. (2018) Polymorphisms in TWIST1 and ZEB1 are associated with prognosis of gastric cancer patients, Anticancer Res., 38, 3871-3877, https://doi.org/10.21873/anticanres.12671.

    Article  CAS  PubMed  Google Scholar 

  50. Sundararajan, V., Gengenbacher, N., Stemmler, M. P., Kleemann, J. A., Brabletz, T., and Brabletz, S. (2015) The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5, Oncotarget, 6, 27083-27096, https://doi.org/10.18632/oncotarget.4807.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moes, M., Le Béchec, A., Crespo, I., Laurini, C., Halavatyi, A., Vetter, G., Del Sol, A., and Friederich, E. (2012) A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition, PLoS One, 7, e35440, https://doi.org/10.1371/journal.pone.0035440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Otsubo, T., Akiyama, Y., Yanagihara, K., and Yuasa, Y. (2008) SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis, Br. J. Cancer, 98, 824-831, https://doi.org/10.1038/sj.bjc.6604193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medrano-Gonzálezl, P. A., Cruz-Villegas, F., Alarcón Del Carmen, A., Montaño, L. F., and Rendón-Huerta, E. P. (2022) Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells, Mol. Biol. Rep., 49, 11663-11674, https://doi.org/10.1007/s11033-022-07976-z.

    Article  CAS  PubMed  Google Scholar 

  54. Yu, S., Zhang, Y., Li, Q., Zhang, Z., Zhao, G., and Xu, J. (2019) CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer, Cell Death Dis., 10, 949, https://doi.org/10.1038/s41419-019-2168-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, A., Beetham, H., Black, M. A., Priya, R., Telford, B. J., Guest, J., Wiggins, G. A., Godwin, T. D., Yap, A. S., and Guilford, P. J. (2014) E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition, BMC Cancer, 14, 552, https://doi.org/10.1186/1471-2407-14-552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dart, A. (2023) EMT in chemoresistance, Nat. Rev. Cancer, 23, 349, https://doi.org/10.1038/s41568-023-00581-7.

    Article  CAS  PubMed  Google Scholar 

  57. Singh, A., and Settleman, J. (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer, Oncogene, 29, 4741-4751, https://doi.org/10.1038/onc.2010.215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Essafi Rhouma, H., Trabelsi, N., Chimento, A., Benincasa, C., Tamaalli, A., Perri, E., Zarrouk, M., and Pezzi, V. (2021) Olea europaea L. flowers as a new promising anticancer natural product: phenolic composition, antiproliferative activity and apoptosis induction, Nat. Prod. Res., 8, 1-4, https://doi.org/10.1080/14786419.2019.1637867.

    Article  CAS  Google Scholar 

  59. Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Alaiz, M., Vioque, J., Girón-Calle, J., and Fernández-Bolaños, J. (2019) Pectin-rich extracts from olives inhibit proliferation of Caco-2 and THP-1 cells, Food Funct., 10, 4844-4853, https://doi.org/10.1039/c9fo00917e.

    Article  CAS  PubMed  Google Scholar 

  60. Benot-Dominguez, R., Tupone, M. G., Castelli, V., d’Angelo, M., Benedetti, E., Quintiliani, M., Cinque, B., Forte, I. M., Cifone, M. G., Ippoliti, R., Barboni, B., Giordano, A., and Cimini, A. (2021) Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells, Biomed Pharmacother., 134, 11113, https://doi.org/10.1016/j.biopha.2020.111139.

    Article  CAS  Google Scholar 

  61. Ruzzolini, J., Peppicelli, S., Andreucci, E., Bianchini, F., Scardigli, A., Romani, A., la Marca, G., Nediani, C., and Calorini, L. (2018) Oleuropein, the main polyphenol of Olea europaea leaf extract, has an anti-cancer effect on human BRAF melanoma cells and potentiates the cytotoxicity of current chemotherapies, Nutrients, 10, 1950, https://doi.org/10.3390/nu10121950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zeriouh, W., Nani, A., Belarbi, M., Dumont, A., de Rosny, C., Aboura, I., Ghanemi, F. Z., Murtaza, B., Patoli, D., Thomas, C., Apetoh, L., Rébé, C., Delmas, D., Khan, N. A., Ghiringhelli, F., Rialland, M., and Hichami, A. (2017) Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway, PLoS One, 12, e0170823, https://doi.org/10.1371/journal.pone.0170823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Samet, I., Han, J., Jlaiel, L., Sayadi, S., and Isoda, H. (2014) Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism, Oxid. Med. Cell Longev., 9, 27619, https://doi.org/10.1155/2014/927619.

    Article  CAS  Google Scholar 

  64. Ercelik, M., Tunca, B., Ak Aksoy, S., Tekin, C., and Tezcan, G. (2023) Olea europaea L. leaf extract attenuates temozolomide-induced senescence-associated secretion phenotype in glioblastoma, Turk. J. Pharm. Sci., 9, 68-77, https://doi.org/10.4274/tjps.galenos.2022.57639.

    Article  CAS  Google Scholar 

  65. Tezcan, G., Taskapilioglu, M. O., Tunca, B., Bekar, A., Demirci, H., Kocaeli, H., Aksoy, S. A., Egeli, U., Cecener, G., and Tolunay, S. (2017) Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro, Biomed Pharmacother., 90, 713-723, https://doi.org/10.1016/j.biopha.2017.04.022.

    Article  CAS  PubMed  Google Scholar 

  66. Tezcan, G., Tunca, B., Demirci, H., Bekar, A., Taskapilioglu, M. O., Kocaeli, H., Egeli, U., Cecener, G., Tolunay, S., and Vatan, O. (2017) Olea europaea leaf extract improves the efficacy of temozolomide therapy by inducing MGMT methylation and reducing P53 expression in glioblastoma, Nutr. Cancer, 69, 873-880, https://doi.org/10.1080/01635581.2017.1339810.

    Article  CAS  PubMed  Google Scholar 

  67. Ohtsu, A. (2008) Chemotherapy for metastatic gastric cancer: past, present, and future, J. Gastroenterol., 43, 256-264, https://doi.org/10.1007/s00535-008-2177-6.

    Article  CAS  PubMed  Google Scholar 

  68. Tong, H., Li, T., Qiu, W., and Zhu, Z. (2019) Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy, Oncol. Lett., 18, 5709-5716, https://doi.org/10.3892/ol.2019.10967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Visco, Z. R., Sfakianos, G., Grenier, C., Boudreau, M. H., Simpson, S., Rodriguez, I., Whitaker, R., Yao, D. Y., Berchuck, A., Murphy, S. K., and Huang, Z. (2021) Epigenetic regulation of claudin-1 in the development of ovarian cancer recurrence and drug resistance, Front. Oncol., 11, 620873, https://doi.org/10.3389/fonc.2021.620873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fang, S., Yu, L., Mei, H., Yang, J., Gao, T., Cheng, A., Guo, W., Xia, K., and Liu, G. (2016) Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail, Oncol. Lett., 12, 5007-5014, https://doi.org/10.3892/ol.2016.5342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, S., Wang, G., Tao, K., Cai, K., Wu, K., Ye, L., Bai, J., Yin, Y., Wang, J., Shuai, X., Gao, J., Pu, J., and Li, H. (2020) Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 cooperates with enhancer of zeste homolog 2 to promote hepatocellular carcinoma development by modulating the microRNA-22/Snail family transcriptional repressor 1 axis, Cancer Sci., 111, 1582-1595, https://doi.org/10.1111/cas.14372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsusaka, S., and Lenz, H. J. (2015) Pharmacogenomics of fluorouracil-based chemotherapy toxicity, Expert Opin. Drug Metab. Toxicol., 11, 811-821, https://doi.org/10.1517/17425255.2015.1027684.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Deniz Gülkaya from Bursa Uludag University Department of Immunology for assistance in flow cytometry. The authors are grateful to Assoc. Prof. Gurler Akpinar and Prof. Murat Kasap from Kocaeli University, Department of Medical Biology, for technical support. M.E. is supported by the 100/2000 grant from the Council of Higher Education as a PhD Scholar in Molecular Biology and Genetics (Gene Therapy and Genome Studies). The study was also supported by the Kazan Federal University, Ministry of Health of the Russian Federation and Strategic Academic Leadership Program (PRIORITY-2030).

Funding

This study was supported by the Science Foundation of Bursa Uludag University TKO-2020-175 and by the Russian Science Foundation (project no. 20-15-00001).

Author information

Authors and Affiliations

Authors

Contributions

C.T., M.E., G.T., B.T., and S.B. developed the study concept; C.T., M.E., G.T., S.A.A., O.I., N.U., and B.T. collected and reviewed the data; C.T., M.E., G.T., S.A.A., P.D., and A.G. performed the experiments; C.T., M.E., G.T., S.A.A., P.D., A.G., F.B., B.T., and S.B. developed the methodology, O.I. administered the project; G.T., F.B., O.I., N.U., and B.T. supervised the study; C.T., M.E., G.T., P.D., A.G., O.I., N.U., B.T., and S.B. validated the data; C.T., M.E., G.T., S.A.A., F.B., and B.T. visualization; C.T., M.E., G.T., S.A.A., and B.T. wrote the original draft; C.T., G.T., and S.B. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Sergei Boichuk or Berrin Tunca.

Ethics declarations

The procedures performed in studies involving biological material of human participants comply with the institutional and national research committee (name of institute/committee) and the 1964 Helsinki Declaration and subsequent amendments or comparable ethical standards. This study was approved by the local Ethics Committee of Bursa Uludag University (decision number 2019-6/32). The authors of this work declare that they have no conflicts of interest.

Additional information

Data availability statement. All data and materials are available and could be obtained from the corresponding author Tunca B.

Informed consent. Informed consent was obtained from all subjects involved in the study.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, C., Ercelik, M., Dunaev, P. et al. Leaf Extract from European Olive (Olea europaea L.) Post-Transcriptionally Suppresses the Epithelial-Mesenchymal Transition and Sensitizes Gastric Cancer Cells to Chemotherapy. Biochemistry Moscow 89, 97–115 (2024). https://doi.org/10.1134/S0006297924010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010061

Keywords

Navigation