Skip to main content
Log in

Natural Activators of Autophagy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Autophagy is the process by which cell contents, such as aggregated proteins, dysfunctional organelles, and cell structures are sequestered by autophagosome and delivered to lysosomes for degradation. As a process that allows the cell to get rid of non-functional components that tend to accumulate with age, autophagy has been associated with many human diseases. In this regard, the search for autophagy activators and the study of their mechanism of action is an important task for treatment of many diseases, as well as for increasing healthy life expectancy. Plants are rich sources of autophagy activators, containing large amounts of polyphenolic compounds in their composition, which can be autophagy activators in their original form, or can be metabolized by the intestinal microbiota to active compounds. This review is devoted to the plant-based autophagy activators with emphasis on the sources of their production, mechanism of action, and application in various diseases. The review also describes companies commercializing natural autophagy activators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Abbreviations

Akt:

RAC-α serine/threonine protein kinase

AMPK:

AMP-activated protein kinase

BECN1:

beclin-1

LC3:

microtubule-associated protein light chain 3

LKB1:

liver kinase B1

mTOR:

mammalian target of rapamycin

mTORC1:

mammalian target of rapamycin complex 1

p62/SQSTM1:

sequestosome 1

p70S6K:

ribosomal protein S6 kinase

PI3K:

phosphatidylinositol-3-kinase

PINK1:

PTEN-induced protein kinase 1

ROS:

reactive oxygen species

SIRT1:

sirtuin 1

TFE3:

transcription factor E3

TFEB:

transcription factor EB

UA:

urolithin A

Ub:

ubiquitin

ULK1:

unc-51-like autophagy-activating kinase 1

References

  1. Shintani, T., and Klionsky, D. J. (2004) Autophagy in health and disease: a double-edged sword, Science, 306, 990-995, https://doi.org/10.1126/science.1099993.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Yang, Q., Wang, R., and Zhu, L. (2019) Chaperone-mediated autophagy, Adv. Exp. Med. Biol., 1206, 435-452, https://doi.org/10.1007/978-981-15-0602-4_20.

    Article  CAS  PubMed  Google Scholar 

  3. Khaminets, A., Behl, C., and Dikic, I. (2016) Ubiquitin-dependent and independent signals in selective autophagy, Trends Cell Biol., 26, 6-16, https://doi.org/10.1016/j.tcb.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  4. Kaizuka, T., Morishita, H., Hama, Y., Tsukamoto, S., Matsui, T., et al. (2016) An autophagic flux probe that releases an internal control, Mol. Cell, 64, 835-849, https://doi.org/10.1016/j.molcel.2016.09.037.

    Article  CAS  PubMed  Google Scholar 

  5. Rhodes, C. H., Zhu, C., Agus, J., Tang, X., Li, Q., et al. (2023) Human fasting modulates macrophage function and upregulates multiple bioactive metabolites that extend lifespan in Caenorhabditis elegans: a pilot clinical study, Am. J. Clin. Nutr., 117, 286-297, https://doi.org/10.1016/j.ajcnut.2022.10.015.

    Article  CAS  PubMed  Google Scholar 

  6. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J., and Kroemer, G. (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential, Cell Metab., 29, 592-610, https://doi.org/10.1016/j.cmet.2019.01.018.

    Article  CAS  PubMed  Google Scholar 

  7. Mizushima, N., Yoshimori, T., and Levine, B. (2010) Methods in mammalian autophagy research, Cell, 140, 313-326, https://doi.org/10.1016/j.cell.2010.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bravo-San Pedro, J. M., Kroemer, G., and Galluzzi, L. (2017) Autophagy and mitophagy in cardiovascular disease, Circ. Res., 120, 1812-1824, https://doi.org/10.1161/CIRCRESAHA.117.311082.

    Article  CAS  PubMed  Google Scholar 

  9. Georgakopoulos, N. D., Wells, G., and Campanella, M. (2017) The pharmacological regulation of cellular mitophagy, Nat. Chem. Biol., 13, 136-146, https://doi.org/10.1038/nchembio.2287.

    Article  CAS  PubMed  Google Scholar 

  10. Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V., and Roth, G. A. (2022) The global burden of cardiovascular diseases and risk, J. Am. Coll. Cardiol., 80, 2361-2371, https://doi.org/10.1016/j.jacc.2022.11.005.

    Article  PubMed  Google Scholar 

  11. Ryu, D., Mouchiroud, L., Andreux, P. A., Katsyuba, E., Moullan, N., et al. (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents, Nat. Med., 22, 879-888, https://doi.org/10.1038/nm.4132.

    Article  CAS  PubMed  Google Scholar 

  12. Andreux, P. A., Blanco-Bose, W., Ryu, D., Burdet, F., Ibberson, M., et al. (2019) The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans, Nat. Metab., 1, 595-603, https://doi.org/10.1038/s42255-019-0073-4.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, S., Liu, T., Hu, C., Li, W., Meng, Y., et al. (2022) Ginsenoside compound K protects against obesity through pharmacological targeting of glucocorticoid receptor to activate lipophagy and lipid metabolism, Pharmaceutics, 14, 1192, https://doi.org/10.3390/pharmaceutics14061192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim, H., and Lee, M.-S. (2018) Amelioration of obesity-induced diabetes by a novel autophagy enhancer, CST, 2, 181-183, https://doi.org/10.15698/cst2018.07.146.

    Article  Google Scholar 

  15. Minami, Y., Hoshino, A., Higuchi, Y., Hamaguchi, M., Kaneko, Y., et al. (2023) Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion, Nat. Commun., 14, 4084, https://doi.org/10.1038/s41467-023-39404-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Jung, J., Park, J., Kim, M., Ha, J., Cho, H., et al. (2023) SB2301-mediated perturbation of membrane composition in lipid droplets induces lipophagy and lipid droplets ubiquitination, Commun. Biol., 6, 300, https://doi.org/10.1038/s42003-023-04682-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yerra, V. G., Kalvala, A. K., and Kumar, A. (2017) Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy, J. Nutr. Biochem., 47, 41-52, https://doi.org/10.1016/j.jnutbio.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  18. Campbell, G. R., and Spector, S. A. (2012) Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy, PLoS Pathog., 8, e1002689, https://doi.org/10.1371/journal.ppat.1002689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, 402, 672-676, https://doi.org/10.1038/45257.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Marinković, M., Šprung, M., Buljubašić, M., and Novak, I. (2018) Autophagy modulation in cancer: current knowledge on action and therapy, Oxid. Med. Cell. Longev., 2018, 8023821, https://doi.org/10.1155/2018/8023821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie, Z., Lau, K., Eby, B., Lozano, P., He, C., et al. (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice, Diabetes, 60, 1770-1778, https://doi.org/10.2337/db10-0351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, B., Yang, Q., Sun, Y., Xing, Y., Wang, Y., et al. (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice, J. Cell. Mol. Med., 18, 1599-1611, https://doi.org/10.1111/jcmm.12312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pierzynowska, K., Gaffke, L., Cyske, Z., Puchalski, M., Rintz, E., et al. (2018) Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases, Metab. Brain. Dis., 33, 989-1008, https://doi.org/10.1007/s11011-018-0214-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guseva, E. A., Pavlova, J. A., Dontsova, O. A., and Sergiev, P. V. (2024) Synthetic activators of autophagy, Biochemistry (Moscow), 89, 27-52, https://doi.org/10.1134/S0006297924010024.

    Article  Google Scholar 

  25. Li, X., Feng, Y., Wang, X.-X., Truong, D., and Wu, Y.-C. (2020) The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations, Aging Dis., 11, 1608-1622, https://doi.org/10.14336/AD.2020.0216.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palmieri, M., Pal, R., Nelvagal, H. R., Lotfi, P., Stinnett, G. R., et al. (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases, Nat. Commun., 8, 14338, https://doi.org/10.1038/ncomms14338.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., et al. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2, PLoS Biol., 7, e38, https://doi.org/10.1371/journal.pbio.1000038.

    Article  CAS  PubMed  Google Scholar 

  28. He, C., and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy, Annu. Rev. Genet., 43, 67-93, https://doi.org/10.1146/annurev-genet-102808-114910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimura, S., Noda, T., and Yoshimori, T. (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3, Autophagy, 3, 452-460, https://doi.org/10.4161/auto.4451.

    Article  CAS  PubMed  Google Scholar 

  30. Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., et al. (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death, J. Cell. Biol., 171, 603-614, https://doi.org/10.1083/jcb.200507002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guan, Y., Wang, Y., Li, B., Shen, K., Li, Q., et al. (2021) Mitophagy in carcinogenesis, drug resistance and anticancer therapeutics, Cancer Cell Int., 21, 350, https://doi.org/10.1186/s12935-021-02065-w.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang, Y., Li, T., Li, Z., Liu, N., Yan, Y., et al. (2020) Role of mitophagy in cardiovascular disease, Aging dis., 11, 419, https://doi.org/10.14336/AD.2019.0518.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jetto, C. T., Nambiar, A., and Manjithaya, R. (2022) Mitophagy and neurodegeneration: between the knowns and the unknowns, Front. Cell Dev. Biol., 10, 837337, https://doi.org/10.3389/fcell.2022.837337.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ma, X., McKeen, T., Zhang, J., and Ding, W.-X. (2020) Role and mechanisms of mitophagy in liver diseases, Cells, 9, 837, https://doi.org/10.3390/cells9040837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ke, P.-Y. (2020) Mitophagy in the pathogenesis of liver diseases, Cells, 9, 831, https://doi.org/10.3390/cells9040831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, H., Dai, C., Fan, Y., Guo, B., Ren, K., Tangna Sun, T., and Wang, W. (2017) From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases, J. Bioenerg. Biomembr., 49, 413-422, https://doi.org/10.1007/s10863-017-9727-7.

    Article  CAS  PubMed  Google Scholar 

  37. Zheng, M., Bai, Y., Sun, X., Fu, R., Liu, L., et al. (2022) Resveratrol reestablishes mitochondrial quality control in myocardial ischemia/reperfusion injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α pathway, Molecules, 27, 5545, https://doi.org/10.3390/molecules27175545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McLelland, G.-L., Goiran, T., Yi, W., Dorval, G., Chen, C. X., et al. (2018) Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy, eLife, 7, e32866, https://doi.org/10.7554/eLife.32866.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kopustinskiene, D. M., Jakstas, V., Savickas, A., and Bernatoniene, J. (2020) Flavonoids as anticancer agents, Nutrients, 12, E457, https://doi.org/10.3390/nu12020457.

    Article  CAS  Google Scholar 

  40. Rodríguez-García, C., Sánchez-Quesada, C., and Gaforio, J. J. (2019) Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies, Antioxidants (Basel), 8, E137, https://doi.org/10.3390/antiox8050137.

    Article  CAS  Google Scholar 

  41. Serra, D., Almeida, L. M., and Dinis, T. C. P. (2020) Polyphenols in the management of brain disorders: Modulation of the microbiota-gut-brain axis, Adv. Food. Nutr. Res., 91, 1-27, https://doi.org/10.1016/bs.afnr.2019.08.001.

    Article  CAS  PubMed  Google Scholar 

  42. Shabbir, U., Rubab, M., Daliri, E. B.-M., Chelliah, R., Javed, A., et al. (2021) Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota, Nutrients, 13, 206, https://doi.org/10.3390/nu13010206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Benvenuto, M., Albonici, L., Focaccetti, C., Ciuffa, S., Fazi, S., et al. (2020) Polyphenol-mediated autophagy in cancer: evidence of in vitro and in vivo studies, Int. J. Mol. Sci., 21, E6635, https://doi.org/10.3390/ijms21186635.

    Article  CAS  Google Scholar 

  44. Deng, S., Shanmugam, M. K., Kumar, A. P., Yap, C. T., Sethi, G., et al. (2019) Targeting autophagy using natural compounds for cancer prevention and therapy, Cancer, 125, 1228-1246, https://doi.org/10.1002/cncr.31978.

    Article  PubMed  Google Scholar 

  45. García-Aguilar, A., Palomino, O., Benito, M., and Guillén, C. (2021) Dietary polyphenols in metabolic and neurodegenerative diseases: molecular targets in autophagy and biological effects, Antioxidants (Basel), 10, 142, https://doi.org/10.3390/antiox10020142.

    Article  CAS  PubMed  Google Scholar 

  46. Lewandowska, H., Kalinowska, M., Lewandowski, W., Stępkowski, T. M., and Brzóska, K. (2016) The role of natural polyphenols in cell signaling and cytoprotection against cancer development, J. Nutr. Biochem., 32, 1-19, https://doi.org/10.1016/j.jnutbio.2015.11.006.

    Article  CAS  PubMed  Google Scholar 

  47. Moosavi, M. A., Haghi, A., Rahmati, M., Taniguchi, H., Mocan, A., et al. (2018) Phytochemicals as potent modulators of autophagy for cancer therapy, Cancer Lett., 424, 46-69, https://doi.org/10.1016/j.canlet.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

  48. Pang, X., Zhang, X., Jiang, Y., Su, Q., Li, Q., et al. (2021) Autophagy: mechanisms and therapeutic potential of flavonoids in cancer, Biomolecules, 11, 135, https://doi.org/10.3390/biom11020135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patra, S., Pradhan, B., Nayak, R., Behera, C., Panda, K. C., et al. (2021) Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives, Phytother Res., 35, 4194-4214, https://doi.org/10.1002/ptr.7082.

    Article  PubMed  Google Scholar 

  50. Zhao, Y., Hu, X., Zuo, X., and Wang, M. (2018) Chemopreventive effects of some popular phytochemicals on human colon cancer: a review, Food Funct., 9, 4548-4568, https://doi.org/10.1039/C8FO00850G.

    Article  CAS  PubMed  Google Scholar 

  51. Espín, J. C., Larrosa, M., García-Conesa, M. T., and Tomás-Barberán, F. (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far, Evid. Based Complement Alternat. Med., 2013, 270418, https://doi.org/10.1155/2013/270418.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sallam, I. E., Abdelwareth, A., Attia, H., Aziz, R. K., Homsi, M. N., et al. (2021) Effect of gut microbiota biotransformation on dietary tannins and human health implications, Microorganisms, 9, 965, https://doi.org/10.3390/microorganisms9050965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beltrán, D., Romo-Vaquero, M., Espín, J. C., Tomás-Barberán, F. A., and Selma, M. V. (2018) Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family Eggerthellaceae, isolated from human gut, Int. J. Syst. Evol. Microbiol., 68, 1707-1712, https://doi.org/10.1099/ijsem.0.002735.

    Article  CAS  PubMed  Google Scholar 

  54. Selma, M. V., Beltrán, D., García-Villalba, R., Espín, J. C., and Tomás-Barberán, F. A. (2014) Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species, Food Funct., 5, 1779-1784, https://doi.org/10.1039/C4FO00092G.

    Article  CAS  PubMed  Google Scholar 

  55. Tomás-Barberán, F. A., García-Villalba, R., González-Sarrías, A., Selma, M. V., and Espín, J. C. (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status, J. Agric. Food. Chem., 62, 6535-6538, https://doi.org/10.1021/jf5024615.

    Article  CAS  PubMed  Google Scholar 

  56. Rafii, F. (2015) The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol, Metabolites, 5, 56-73, https://doi.org/10.3390/metabo5010056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stevens, J. F., and Maier, C. S. (2016) The chemistry of gut microbial metabolism of polyphenols, Phytochem. Rev., 15, 425-444, https://doi.org/10.1007/s11101-016-9459-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurtz, C. C., Otis, J. P., Regan, M. D., and Carey, H. V. (2021) How the gut and liver hibernate, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 253, 110875, https://doi.org/10.1016/j.cbpa.2020.110875.

    Article  CAS  PubMed  Google Scholar 

  59. Martens, E. C., Chiang, H. C., and Gordon, J. I. (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont, Cell Host Microbe, 4, 447-457, https://doi.org/10.1016/j.chom.2008.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C.-H., Westover, B. P., et al. (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont, Science, 307, 1955-1959, https://doi.org/10.1126/science.1109051.

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Bergman, E. N. (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiol. Rev., 70, 567-590, https://doi.org/10.1152/physrev.1990.70.2.567.

    Article  CAS  PubMed  Google Scholar 

  62. Iannucci, L. F., Sun, J., Singh, B. K., Zhou, J., Kaddai, V. A., et al. (2016) Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells, Biochem. Biophys. Res. Commun., 480, 461-467, https://doi.org/10.1016/j.bbrc.2016.10.072.

    Article  CAS  PubMed  Google Scholar 

  63. Russo, M., and Russo, G. L. (2018) Autophagy inducers in cancer, Biochem. Pharmacol., 153, 51-61, https://doi.org/10.1016/j.bcp.2018.02.007.

    Article  CAS  PubMed  Google Scholar 

  64. Scarlatti, F., Maffei, R., Beau, I., Codogno, P., and Ghidoni, R. (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells, Cell Death Differ., 15, 1318-1329, https://doi.org/10.1038/cdd.2008.51.

    Article  PubMed  Google Scholar 

  65. Cai, H., Scott, E., Kholghi, A., Andreadi, C., Rufini, A., et al. (2015) Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice, Sci. Transl. Med., 7, 298ra117, https://doi.org/10.1126/scitranslmed.aaa7619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferraresi, A., Titone, R., Follo, C., Castiglioni, A., Chiorino, G., et al. (2017) The protein restriction mimetic Resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells, Mol. Carcinog., 56, 2681-2691, https://doi.org/10.1002/mc.22711.

    Article  CAS  PubMed  Google Scholar 

  67. Tang, Q., Li, G., Wei, X., Zhang, J., Chiu, J.-F., et al. (2013) Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma, Cancer. Lett., 336, 325-337, https://doi.org/10.1016/j.canlet.2013.03.023.

    Article  CAS  PubMed  Google Scholar 

  68. Fukuda, T., Oda, K., Wada-Hiraike, O., Sone, K., Inaba, K., et al. (2016) Autophagy inhibition augments resveratrol-induced apoptosis in Ishikawa endometrial cancer cells, Oncol. Lett., 12, 2560-2566, https://doi.org/10.3892/ol.2016.4978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, J., Li, J., Cao, N., Li, Z., Han, J., et al. (2018) Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK, Onco Targets Ther., 11, 7777-7786, https://doi.org/10.2147/OTT.S159095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bode, L. M., Bunzel, D., Huch, M., Cho, G.-S., Ruhland, D., et al. (2013) In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota, Am. J. Clin. Nutr., 97, 295-309, https://doi.org/10.3945/ajcn.112.049379.

    Article  CAS  PubMed  Google Scholar 

  71. Jarosova, V., Vesely, O., Marsik, P., Jaimes, J. D., Smejkal, K., et al. (2019) Metabolism of stilbenoids by human faecal microbiota, Molecules, 24, E1155, https://doi.org/10.3390/molecules24061155.

    Article  CAS  Google Scholar 

  72. Luca, S. V., Macovei, I., Bujor, A., Miron, A., Skalicka-Woźniak, K., et al. (2020) Bioactivity of dietary polyphenols: the role of metabolites, Crit. Rev. Food. Sci. Nutr., 60, 626-659, https://doi.org/10.1080/10408398.2018.1546669.

    Article  CAS  PubMed  Google Scholar 

  73. Kasi, P. D., Tamilselvam, R., Skalicka-Woźniak, K., Nabavi, S. F., Daglia, M., et al. (2016) Molecular targets of curcumin for cancer therapy: an updated review, Tumour Biol., 37, 13017-13028, https://doi.org/10.1007/s13277-016-5183-y.

    Article  CAS  PubMed  Google Scholar 

  74. Fu, H., Wang, C., Yang, D., Wei, Z., Xu, J., et al. (2018) Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling, J. Cell. Physiol., 233, 4634-4642, https://doi.org/10.1002/jcp.26190.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, C., Ma, X., Wang, Z., Zeng, X., Hu, Z., et al. (2017) Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation, Drug Des. Devel. Ther., 11, 431-439, https://doi.org/10.2147/DDDT.S126964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu, Y., Wu, Y., Wang, L., Qian, C., Wang, Q., et al. (2020) Identification of curcumin as a novel natural inhibitor of rDNA transcription, Cell Cycle, 19, 3362-3374, https://doi.org/10.1080/15384101.2020.1843817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiao, K., Jiang, J., Guan, C., Dong, C., Wang, G., et al. (2013) Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells, J. Pharmacol. Sci., 123, 102-109, https://doi.org/10.1254/jphs.13085FP.

    Article  CAS  PubMed  Google Scholar 

  78. Bi, Y., Shen, C., Li, C., Liu, Y., Gao, D., et al. (2016) Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells, Tumour. Biol., 37, 3549-3560, https://doi.org/10.1007/s13277-015-4125-4.

    Article  CAS  PubMed  Google Scholar 

  79. Heger, M., van Golen, R. F., Broekgaarden, M., and Michel, M. C. (2014) The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer, Pharmacol. Rev., 66, 222-307, https://doi.org/10.1124/pr.110.004044.

    Article  CAS  PubMed  Google Scholar 

  80. Jabczyk, M., Nowak, J., Hudzik, B., and Zubelewicz-Szkodzińska, B. (2021) Curcumin and its potential impact on microbiota, Nutrients, 13, 2004, https://doi.org/10.3390/nu13062004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scazzocchio, B., Minghetti, L., and D’Archivio, M. (2020) Interaction between gut microbiota and curcumin: a new key of understanding for the health effects of curcumin, Nutrients, 12, 2499, https://doi.org/10.3390/nu12092499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen, L., and Ji, H.-F. (2019) Bidirectional interactions between dietary curcumin and gut microbiota, Crit. Rev. Food Sci. Nutr., 59, 2896-2902, https://doi.org/10.1080/10408398.2018.1478388.

    Article  CAS  PubMed  Google Scholar 

  83. Zam, W. (2018) Gut microbiota as a prospective therapeutic target for curcumin: a review of mutual influence, J. Nutr. Metab., 2018, 1367984, https://doi.org/10.1155/2018/1367984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Song, G., Lu, H., Chen, F., Wang, Y., Fan, W., et al. (2018) Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non‑small cell lung carcinoma cells, Mol. Med. Rep., 17, 5964-5969, https://doi.org/10.3892/mmr.2018.8600.

    Article  CAS  PubMed  Google Scholar 

  85. Wu, J.-C., Lai, C.-S., Badmaev, V., Nagabhushanam, K., Ho, C.-T., et al. (2011) Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3K/Akt-mTOR and MAPK signaling pathways in human leukemia HL-60 cells, Mol. Nutr. Food Res., 55, 1646-1654, https://doi.org/10.1002/mnfr.201100454.

    Article  CAS  PubMed  Google Scholar 

  86. Russo, M., Milito, A., Spagnuolo, C., Carbone, V., Rosén, A., et al. (2017) CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia, Oncotarget, 8, 42571-42587, https://doi.org/10.18632/oncotarget.17246.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., et al. (2011) Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling, Autophagy, 7, 966-978, https://doi.org/10.4161/auto.7.9.15863.

    Article  CAS  PubMed  Google Scholar 

  88. Moon, J.-H., Eo, S. K., Lee, J. H., and Park, S.-Y. (2015) Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death, Oncol. Rep., 34, 375-381, https://doi.org/10.3892/or.2015.3991.

    Article  CAS  PubMed  Google Scholar 

  89. Guo, H., Ding, H., Tang, X., Liang, M., Li, S., et al. (2021) Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro, Thoracic. Cancer, 12, 1415-1422, https://doi.org/10.1111/1759-7714.13925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu, Q., Tian, A.-L., Durand, S., Aprahamian, F., Nirmalathasan, N., et al. (2020) Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy, Cell Death Dis., 11, 1015, https://doi.org/10.1038/s41419-020-03226-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, P., Chen, Q., Chen, X., Qi, H., Yang, Y., et al. (2023) Morusin and mulberrin extend the lifespans of yeast and C. elegans via suppressing nutrient-sensing pathways, GeroScience, 45, 949-964, https://doi.org/10.1007/s11357-022-00693-2.

    Article  CAS  PubMed  Google Scholar 

  92. Zhou, X., Yue, G. G.-L., Chan, A. M.-L., Tsui, S. K.-W., Fung, K.-P., et al. (2017) Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer, Biochem. Pharmacol., 142, 58-70, https://doi.org/10.1016/j.bcp.2017.06.133.

    Article  CAS  PubMed  Google Scholar 

  93. Sun, J., Feng, Y., Wang, Y., Ji, Q., Cai, G., et al. (2019) α-Hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation, Int. J. Oncol., 54, 1601-1612, https://doi.org/10.3892/ijo.2019.4757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shin, S., Jing, K., Jeong, S., Kim, N., Song, K.-S., et al. (2013) The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53, Biomed. Res. Int., 2013, 568671, https://doi.org/10.1155/2013/568671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Prajapat, S. K., Subramani, C., Sharma, P., Vrati, S., and Kalia, M. (2022) Avobenzone, Guaiazulene and Tioxolone identified as potent autophagy inducers in a high-throughput image based screen for autophagy flux, Autophagy Rep., 1, 523-536, https://doi.org/10.1080/27694127.2022.2132075.

    Article  CAS  Google Scholar 

  96. Ortiz, M. I., Fernández-Martínez, E., Soria-Jasso, L. E., Lucas-Gómez, I., Villagómez-Ibarra, R., et al. (2016) Isolation, identification and molecular docking as cyclooxygenase (COX) inhibitors of the main constituents of Matricaria chamomilla L. extract and its synergistic interaction with diclofenac on nociception and gastric damage in rats, Biomed. Pharmacother., 78, 248-256, https://doi.org/10.1016/j.biopha.2016.01.029.

    Article  CAS  PubMed  Google Scholar 

  97. Ye, Q., Zhou, L., Jin, P., Li, L., Zheng, S., et al. (2021) Guaiazulene triggers ROS-induced apoptosis and protective autophagy in non-small cell lung cancer, Front. Pharmacol., 12, 621181, https://doi.org/10.3389/fphar.2021.621181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reinke, A., Chen, J. C.-Y., Aronova, S., and Powers, T. (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p, J. Biol. Chem., 281, 31616-31626, https://doi.org/10.1074/jbc.M603107200.

    Article  CAS  PubMed  Google Scholar 

  99. Saiki, S., Sasazawa, Y., Imamichi, Y., Kawajiri, S., Fujimaki, T., et al. (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition, Autophagy, 7, 176-187, https://doi.org/10.4161/auto.7.2.14074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wanke, V., Cameroni, E., Uotila, A., Piccolis, M., Urban, J., et al. (2008) Caffeine extends yeast lifespan by targeting TORC1, Mol. Microbiol., 69, 277-285, https://doi.org/10.1111/j.1365-2958.2008.06292.x.

    Article  CAS  PubMed  Google Scholar 

  101. Sinha, R. A., Farah, B. L., Singh, B. K., Siddique, M. M., Li, Y., et al. (2014) Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice, Hepatology, 59, 1366-1380, https://doi.org/10.1002/hep.26667.

    Article  CAS  PubMed  Google Scholar 

  102. Moon, J.-H., Lee, J.-H., Park, J.-Y., Kim, S.-W., Lee, Y.-J., et al. (2014) Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy, Int. J. Mol. Med., 34, 553-558, https://doi.org/10.3892/ijmm.2014.1814.

    Article  CAS  PubMed  Google Scholar 

  103. Pietrocola, F., Malik, S. A., Mariño, G., Vacchelli, E., Senovilla, L., et al. (2014) Coffee induces autophagy in vivo, Cell Cycle, 13, 1987-1994, https://doi.org/10.4161/cc.28929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Freedman, N. D., Park, Y., Abnet, C. C., Hollenbeck, A. R., and Sinha, R. (2012) Association of coffee drinking with total and cause-specific mortality, N. Engl. J. Med., 366, 1891-1904, https://doi.org/10.1056/NEJMoa1112010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, C., Zhang, J., Hou, J., Hui, M., Qi, H., et al. (2023) Induction of autophagy via the PI3K/Akt/mTOR signaling pathway by Pueraria flavonoids improves non-alcoholic fatty liver disease in obese mice, Biomed. Pharmacother., 157, 114005, https://doi.org/10.1016/j.biopha.2022.114005.

    Article  CAS  PubMed  Google Scholar 

  106. Kang, A.-W., Sun, C., Li, H.-T., Zhong, K., Zeng, X.-H., et al. (2023) Puerarin extends the lifespan of Drosophila melanogaster by activating autophagy, Food Funct., 14, 2149-2161, https://doi.org/10.1039/D2FO02800J.

    Article  CAS  PubMed  Google Scholar 

  107. Wu, Q., Tian, A.-L., Li, B., Leduc, M., Forveille, S., et al. (2021) IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms, J. Immunother. Cancer, 9, e002722, https://doi.org/10.1136/jitc-2021-002722.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Honma, Y., Sato-Morita, M., Katsuki, Y., Mihara, H., Baba, R., et al. (2018) Trehalose activates autophagy and decreases proteasome inhibitor-induced endoplasmic reticulum stress and oxidative stress-mediated cytotoxicity in hepatocytes, Hepatol. Res., 48, 94-105, https://doi.org/10.1111/hepr.12892.

    Article  CAS  PubMed  Google Scholar 

  109. Meier, J. L., and Grose, C. (2017) Variable effects of autophagy induction by trehalose on herpesviruses depending on conditions of infection, Yale J. Biol. Med., 90, 25-33.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, X., Li, M., Li, L., Xu, S., Huang, D., et al. (2016) Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway, Sci. Rep., 6, 28423, https://doi.org/10.1038/srep28423.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. He, Q., Koprich, J. B., Wang, Y., Yu, W., Xiao, B., et al. (2016) Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease, Mol. Neurobiol., 53, 2258-2268, https://doi.org/10.1007/s12035-015-9173-7.

    Article  CAS  PubMed  Google Scholar 

  112. Krüger, U., Wang, Y., Kumar, S., and Mandelkow, E.-M. (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose, Neurobiol. Aging, 33, 2291-2305, https://doi.org/10.1016/j.neurobiolaging.2011.11.009.

    Article  CAS  PubMed  Google Scholar 

  113. Aguib, Y., Heiseke, A., Gilch, S., Riemer, C., Baier, M., et al. (2009) Autophagy induction by trehalose counteracts cellular prion infection, Autophagy, 5, 361-369, https://doi.org/10.4161/auto.5.3.7662.

    Article  CAS  PubMed  Google Scholar 

  114. Wada, S., Kubota, Y., Sawa, R., Umekita, M., Hatano, M., et al. (2015) Novel autophagy inducers lentztrehaloses A, B and C, J. Antibiot. (Tokyo), 68, 521-529, https://doi.org/10.1038/ja.2015.23.

    Article  CAS  PubMed  Google Scholar 

  115. Campbell, G. R., and Spector, S. A. (2011) Hormonally active vitamin D3 (1alpha,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection, J. Biol. Chem., 286, 18890-18902, https://doi.org/10.1074/jbc.M110.206110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Høyer-Hansen, M., Bastholm, L., Mathiasen, I. S., Elling, F., and Jäättelä, M. (2005) Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin-1 mediated autophagic cell death, Cell Death Differ., 12, 1297-1309, https://doi.org/10.1038/sj.cdd.4401651.

    Article  CAS  PubMed  Google Scholar 

  117. Høyer-Hansen, M., Nordbrandt, S. P. S., and Jäättelä, M. (2010) Autophagy as a basis for the health-promoting effects of vitamin D, Trends Mol. Med., 16, 295-302, https://doi.org/10.1016/j.molmed.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  118. Lee, Y., Kwon, J., Jeong, J. H., Ryu, J.-H., and Kim, K. I. (2022) Kazinol C from Broussonetia kazinoki stimulates autophagy via endoplasmic reticulum stress-mediated signaling, Anim. Cells Syst., 26, 28-36, https://doi.org/10.1080/19768354.2021.2023628.

    Article  CAS  Google Scholar 

  119. Lan, F., Cacicedo, J. M., Ruderman, N., and Ido, Y. (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1, J. Biol. Chem., 283, 27628-27635, https://doi.org/10.1074/jbc.M805711200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. DiNicolantonio, J. J., McCarty, M. F., Assanga, S. I., Lujan, L. L., and O’Keefe, J. H. (2022) Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity, Open Heart, 9, e001801, https://doi.org/10.1136/openhrt-2021-001801.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Guo, P., Wang, P., Liu, L., Wang, P., Lin, G., et al. (2023) Naringin alleviates glucose-induced aging by reducing fat accumulation and promoting autophagy in Caenorhabditis elegans, Nutrients, 15, 907, https://doi.org/10.3390/nu15040907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Salama, A. A. A., Yassen, N. N., and Mansour, H. M. (2023) Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: implication of SIRT1 pathways, Life Sci., 324, 121471, https://doi.org/10.1016/j.lfs.2023.121471.

    Article  CAS  PubMed  Google Scholar 

  123. Kepp, O., Chen, G., Carmona-Gutierrez, D., Madeo, F., and Kroemer, G. (2020) A discovery platform for the identification of caloric restriction mimetics with broad health-improving effects, Autophagy, 16, 188-189, https://doi.org/10.1080/15548627.2019.1688984.

    Article  CAS  PubMed  Google Scholar 

  124. Liu, M., Li, N., Lu, X., Shan, S., Gao, X., et al. (2022) Sweet tea (Rubus Suavissmus S. Lee) polysaccharides promote the longevity of Caenorhabditis elegans through autophagy-dependent insulin and mitochondrial pathways, Int. J. Biol. Macromol., 207, 883-892, https://doi.org/10.1016/j.ijbiomac.2022.03.138.

    Article  CAS  PubMed  Google Scholar 

  125. Espín, J. C., González-Sarrías, A., and Tomás-Barberán, F. A. (2017) The gut microbiota: a key factor in the therapeutic effects of (poly)phenols, Biochem. Pharmacol., 139, 82-93, https://doi.org/10.1016/j.bcp.2017.04.033.

    Article  CAS  PubMed  Google Scholar 

  126. Palikaras, K., Daskalaki, I., Markaki, M., and Tavernarakis, N. (2017) Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover, Pharmacol. Ther., 178, 157-174, https://doi.org/10.1016/j.pharmthera.2017.04.005.

    Article  CAS  PubMed  Google Scholar 

  127. Heilman, J., Andreux, P., Tran, N., Rinsch, C., and Blanco-Bose, W. (2017) Safety assessment of Urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid, Food Chem. Toxicol., 108, 289-297, https://doi.org/10.1016/j.fct.2017.07.050.

    Article  CAS  PubMed  Google Scholar 

  128. Singh, A., Andreux, P., Blanco-Bose, W., Ryu, D., Aebischer, P., et al. (2017) Orally administered urolithin a is safe and modulates muscle and mitochondrial biomarkers in elderly, Innov. Aging, 1, 1223-1224, https://doi.org/10.1093/geroni/igx004.4446.

    Article  PubMed Central  Google Scholar 

  129. Muñoz-Esparza, N. C., Latorre-Moratalla, M. L., Comas-Basté, O., Toro-Funes, N., Veciana-Nogués, M. T., et al. (2019) Polyamines in food, Front. Nutr., 6, 108, https://doi.org/10.3389/fnut.2019.00108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eisenberg, T., Abdellatif, M., Schroeder, S., Primessnig, U., Stekovic, S., et al. (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine, Nat. Med., 22, 1428-1438, https://doi.org/10.1038/nm.4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schroeder, S., Hofer, S. J., Zimmermann, A., Pechlaner, R., Dammbrueck, C., et al. (2021) Dietary spermidine improves cognitive function, Cell Rep., 35, 108985, https://doi.org/10.1016/j.celrep.2021.108985.

    Article  CAS  PubMed  Google Scholar 

  132. Schwarz, C., Stekovic, S., Wirth, M., Benson, G., Royer, P., et al. (2018) Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline, Aging, 10, 19-33, https://doi.org/10.18632/aging.101354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pietrocola, F., Lachkar, S., Enot, D. P., Niso-Santano, M., Bravo-San Pedro, J. M., et al. (2015) Spermidine induces autophagy by inhibiting the acetyltransferase EP300, Cell Death Differ., 22, 509-516, https://doi.org/10.1038/cdd.2014.215.

    Article  CAS  PubMed  Google Scholar 

  134. Yuan, X., Tian, G. G., Pei, X., Hu, X., and Wu, J. (2021) Spermidine induces cytoprotective autophagy of female germline stem cells in vitro and ameliorates aging caused by oxidative stress through upregulated sequestosome-1/p62 expression, Cell Biosci., 11, 107, https://doi.org/10.1186/s13578-021-00614-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baek, A. R., Hong, J., Song, K. S., Jang, A. S., Kim, D. J., et al. (2020) Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice, Exp. Mol. Med., 52, 2034-2045, https://doi.org/10.1038/s12276-020-00545-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Messerer, J., Wrede, C., Schipke, J., Brandenberger, C., Abdellatif, M., et al. (2023) Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice, J. Anat., 242, 91-101, https://doi.org/10.1111/joa.13618.

    Article  CAS  PubMed  Google Scholar 

  137. Til, H. P., Falke, H. E., Prinsen, M. K., and Willems, M. I. (1997) Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats, Food Chem. Toxicol., 35, 337-348, https://doi.org/10.1016/S0278-6915(97)00121-X.

    Article  CAS  PubMed  Google Scholar 

  138. Srivastava, V., Zelmanovich, V., Shukla, V., Abergel, R., Cohen, I., et al. (2023) Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage, Autophagy, 19, 474-504, https://doi.org/10.1080/15548627.2022.2078069.

    Article  CAS  PubMed  Google Scholar 

  139. Hawrysh, P. J., Gao, J., Tan, S., Oh, A., Nodwell, J., et al. (2023) PRKN/parkin-mediated mitophagy is induced by the probiotics Saccharomyces boulardii and Lactococcus lactis, Autophagy, 19, 2094-2110, https://doi.org/10.1080/15548627.2023.2172873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fedotova, E. I., Dolgacheva, L. P., Abramov, A. Y., and Berezhnov, A. V. (2022) Lactate and pyruvate activate autophagy and mitophagy that protect cells in toxic model of Parkinson’s disease, Mol. Neurobiol., 59, 177-190, https://doi.org/10.1007/s12035-021-02583-8.

    Article  CAS  PubMed  Google Scholar 

  141. Xu, C., Wu, Y., Tang, L., Liang, Y., and Zhao, Y. (2023) Protective effect of cistanoside A on dopaminergic neurons in Parkinson’s disease via mitophagy, Biotechnol. Appl. Biochem., 70, 268-280, https://doi.org/10.1002/bab.2350.

    Article  CAS  PubMed  Google Scholar 

  142. Kang, H. T., and Hwang, E. S. (2009) Nicotinamide enhances mitochondria quality through autophagy activation in human cells, Aging Cell, 8, 426-438, https://doi.org/10.1111/j.1474-9726.2009.00487.x.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, L., Zhang, X., Zhang, T., Guo, Y., Pei, W., et al. (2023) Linolenic acid ameliorates sarcopenia in C. elegans by promoting mitophagy and fighting oxidative stress, Food Funct., 14, 1498-1509, https://doi.org/10.1039/D2FO02974J.

    Article  CAS  PubMed  Google Scholar 

  144. Li, S., Liu, M., Chen, J., Chen, Y., Yin, M., et al. (2023) L‐carnitine alleviates cardiac microvascular dysfunction in diabetic cardiomyopathy by enhancing PINK1‐Parkin ‐dependent mitophagy through the CPT1a‐PHB2‐PARL pathways, Acta Physiol., 238, e13975, https://doi.org/10.1111/apha.13975.

    Article  CAS  Google Scholar 

  145. D’Amico, D., Olmer, M., Fouassier, A. M., Valdés, P., Andreux, P. A., et al. (2022) Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis, Aging Cell, 21, e13662, https://doi.org/10.1111/acel.13662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Singh, A., D’Amico, D., Andreux, P. A., Dunngalvin, G., Kern, T., et al. (2022) Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population, Eur. J. Clin. Nutr., 76, 297-308, https://doi.org/10.1038/s41430-021-00950-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all research team and to academicians A. G. Gabibov and A. A. Makarov for fruitful discussions.

Funding

This work was financially supported by the company EFKO.

Author information

Authors and Affiliations

Authors

Contributions

J.A.P. and E.A.G. writing text of the paper, O.A.D. discussion of the material, editing text of the paper, P.V.S. concept and supervision of the study, editing text of the paper.

Corresponding authors

Correspondence to Julia A. Pavlova or Petr V. Sergiev.

Ethics declarations

This work does not describe any studies involving human participants and animals performed by and of the authors. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, J.A., Guseva, E.A., Dontsova, O.A. et al. Natural Activators of Autophagy. Biochemistry Moscow 89, 1–26 (2024). https://doi.org/10.1134/S0006297924010012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010012

Keywords

Navigation