Skip to main content
Log in

Impairment of Assembly of the Vimentin Intermediate Filaments Leads to Suppression of Formation and Maturation of Focal Contacts and Alteration of the Type of Cellular Protrusions

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF–/–), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Abbreviations

FC:

focal contact

FCS:

fetal calf serum

MLC:

myosin light chain

pMLC:

phosphorylated form of myosin light chain

VIFs:

vimentin intermediate filaments

References

  1. Petrie, R. J., and Yamada, K. M. (2012) At the leading edge of three-dimensional cell migration, J. Cell Sci., 125, 5917-5926, https://doi.org/10.1242/jcs.093732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pollard, T. D., and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112, 453-465, https://doi.org/10.1016/s0092-8674(03)00120-x.

    Article  CAS  PubMed  Google Scholar 

  3. Charras, G. T., Hu, C. K., Coughlin, M., and Mitchison, T. J. (2006) Reassembly of contractile actin cortex in cell blebs, J. Cell Biol., 175, 477-490, https://doi.org/10.1083/jcb.200602085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Charras, G. T., Coughlin, M., Mitchison, T. J., and Mahadevan, L. (2008) Life and times of a cellular bleb, Biophys. J., 94, 1836-1853, https://doi.org/10.1529/biophysj.107.113605.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Chikina, A. S., Svitkina, T. M., and Alexandrova, A. Y. (2019) Time-resolved ultrastructure of the cortical actin cytoskeleton in dynamic membrane blebs, J. Cell Biol., 218, 445-454, https://doi.org/10.1083/jcb.201806075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laster, S. M., and Mackenzie, J. M. (1996) Bleb formation and F-actin distribution during mitosis and tumor necrosis factor-induced apoptosis, Microsc. Res. Tech., 34, 272-280, https://doi.org/10.1002/(SICI)1097-0029(19960615)34:3<272::AID-JEMT10>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  7. Charras, G., and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia, Nat. Rev. Mol. Cell Biol., 9, 730-736, https://doi.org/10.1038/nrm2453.

    Article  CAS  PubMed  Google Scholar 

  8. Fackler, O. T., and Grosse, R. (2008) Cell motility through plasma membrane blebbing, J. Cell Biol., 181, 879-884, https://doi.org/10.1083/jcb.200802081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paluch, E. K., and Raz, E. (2013) The role and regulation of blebs in cell migration, Curr. Opin. Cell Biol., 25, 582-590, https://doi.org/10.1016/j.ceb.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taddei, M. L., Giannoni, E., Morandi, A., Ippolito, L., Ramazzotti, M., et al. (2014) Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells, Cell Commun. Signal., 12, 24, https://doi.org/10.1186/1478-811X-12-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedl, P., and Alexander, S. (2011) Cancer invasion and the microenvironment: plasticity and reciprocity, Cell, 147, 992-1009, https://doi.org/10.1016/j.cell.2011.11.016.

    Article  CAS  PubMed  Google Scholar 

  12. Friedl, P., and Wolf, K. (2010) Plasticity of cell migration: a multiscale tuning model, J. Cell Biol., 188, 11-19, https://doi.org/10.1083/jcb.200909003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balzer, E. M., Tong, Z., Paul, C. D., Hung, W. C., Stroka, K. M., et al. (2012) Physical confinement alters tumor cell adhesion and migration phenotypes, FASEB J., 26, 4045-4056, https://doi.org/10.1096/fj.12-211441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holle, A. W., Govindan Kutty Devi, N., Clar, K., Fan, A., Saif, T., et al. (2019) Cancer cells invade confined microchannels via a self-directed mesenchymal-to-amoeboid transition, Nano Lett., 10, 2280-2290, https://doi.org/10.1021/acs.nanolett.8b04720.

    Article  CAS  ADS  Google Scholar 

  15. Paul, C., Mistriotis, P., and Konstantopoulos, K. (2017) Cancer cell motility: lessons from migration in confined spaces, Nat. Rev. Cancer, 17, 131-140, https://doi.org/10.1038/nrc.2016.123.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., et al. (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells, Cell, 160, 659-672, https://doi.org/10.1016/j.cell.2015.01.007.

    Article  CAS  PubMed  Google Scholar 

  17. Paluch, E., Piel, M., Prost, J., Bornens, M., and Sykes, C. (2005) Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments, Biophys. J., 89, 724-733, https://doi.org/10.1529/biophysj.105.060590.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Diz-Munoz, A., Krieg, M., Bergert, M., Ibarlucea-Benitez, I., Muller, D. J., et al. (2010) Control of directed cell migration in vivo by membrane-to cortex attachment, PLoS Biol., 8, e1000544, https://doi.org/10.1371/journal.pbio.1000544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chikina, A. S., Rubtsova, S. N., Lomakina, M. E., Potashnikova, D. M., Vorobjev, I. A., and Alexandrova, A. Y. (2019) Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells, Biol. Cell, 111, 245-261, https://doi.org/10.1111/boc.201800078.

    Article  CAS  PubMed  Google Scholar 

  20. Seetharaman, S., and Etienne-Manneville, S. (2020) Cytoskeletal crosstalk in cell migration, Trends Cell Biol., 30, 720-735, https://doi.org/10.1016/j.tcb.2020.06.004.

    Article  CAS  PubMed  Google Scholar 

  21. Kaverina, I., and Straube, A. (2011) Regulation of cell migration by dynamic microtubules, Semin. Cell Dev. Biol., 22, 968-974, https://doi.org/10.1016/j.semcdb.2011.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcin, C., and Straube, A. (2019) Microtubules in cell migration, Essays Biochem., 63, 509-520, https://doi.org/10.1042/EBC20190016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vakhrusheva, A., Endzhievskaya, S., Zhuikov, V., Nekrasova, T., Parshina, E., et al. (2019) The role of vimentin in directional migration of rat fibroblasts, Cytoskeleton (Hoboken), 76, 467-476, https://doi.org/10.1002/cm.21572.

    Article  CAS  PubMed  Google Scholar 

  24. Sivagurunathan, S., Vahabikashi, A., Yang, H., Zhang, J., Vazquez, K., et al. (2022) Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells, Front. Cell Dev. Biol., 10, 929495, https://doi.org/10.3389/fcell.2022.929495.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leube, R. E., Moch, M., and Windoffer, R. (2015) Intermediate filaments and the regulation of focal adhesion, Curr. Opin. Cell Biol., 32, 13-20, https://doi.org/10.1016/j.ceb.2014.09.011.

    Article  CAS  PubMed  Google Scholar 

  26. Zeisberg, M., and Neilson, E. G. (2009) Biomarkers for epithelial-mesenchymal transitions, J. Clin. Invest., 119, 1429-1437, https://doi.org/10.1172/JCI36183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mendez, M. G., Kojima, S.-I., and Goldman, R. D. (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition, FASEB J., 24, 1838-1851, https://doi.org/10.1096/fj.09-151639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gregor, M., Osmanagic-Myers, S., Burgstaller, G., Wolfram, M., Fischer, I., et al. (2014) Mechanosensing through focal adhesion-anchored intermediate filaments, FASEB J., 28, 715-729, https://doi.org/10.1096/fj.13-231829.

    Article  CAS  PubMed  Google Scholar 

  29. Schoumacher, M., Goldman, R. D., Louvard, D., and Vignjevic, D. M. (2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia, J. Cell Biol., 189, 541-556, https://doi.org/10.1083/jcb.200909113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lahat, G., Zhu, Q. S., Huang, K. L., Wang, S. Z., Bolshakov, S., et al. (2010) Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo micexenograft studies, PLoS One, 5, e1010, https://doi.org/10.1371/journal.pone.0214006.

    Article  Google Scholar 

  31. Strouhalova, K., Přechová, M., Gandalovičová, A., Brábek, J., Gregor, M., and Rosel, D. (2020) Vimentin intermediate filaments as potential target for cancer treatment, Cancers, 12, 184, https://doi.org/10.3390/cancers12010184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bergert, M., Erzberger, A., Desai, R. A., Aspalter, I. M., Oates, A. C., et al. (2015) Force transmission during adhesion-independent migration, Nat. Cell Biol., 17, 524-529, https://doi.org/10.1038/ncb3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavenus, S. B., Tudor, S. M., Ullo, M. F., Vosatka, K. W., and Logue, J. S. (2020) A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments, J. Biol. Chem., 295, 6700-6709, https://doi.org/10.1074/jbc.RA119.011537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams, G. Jr., López, M. P., Cartagena-Rivera, A. X., and Waterman, C. M. (2021) Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb-based migration, Mol. Biol. Cell, 32, 1772-1791, https://doi.org/10.1091/mbc.E21-04-0174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robert, A., Hookway, C., and Gelfand, V. I. (2016) Intermediate filament dynamics: What we can see now and why it matters, Bioessays, 3, 232-243, https://doi.org/10.1002/bies.201500142.

    Article  Google Scholar 

  36. Mücke, N., Wedig, T., Bürer, A., Marekov, L. N., Steinert, P. M., et al. (2004) Molecular and biophysical characterization of assembly-starter units of human vimentin, J. Mol. Biol., 340, 97-114, https://doi.org/10.1016/j.jmb.2004.04.039.

    Article  CAS  PubMed  Google Scholar 

  37. Terriac, E., Coceano, G., Mavajian, Z., Hageman, T., Christ, A., et al. (2017) Vimentin levels and serine 71 phosphorylation in the control of cell-matrix adhesions, migration speed, and shape of transformed human fibroblasts, Cell, 6, 2, https://doi.org/10.3390/cells6010002.

    Article  CAS  Google Scholar 

  38. Herrmann, H., and Aebi, U. (2016) Intermediate filaments: structure and assembly, Cold Spring Harb. Perspect. Biol., 8, a018242, https://doi.org/10.1101/cshperspect.a018242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beckham, Y., Vasquez, R. J., Stricker, J., Sayegh, K., Campillo, C., et al. (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly, PLoS One, 9, e100943, https://doi.org/10.1371/journal.pone.0100943.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Meier, M., Padilla, G. P., Herrmann, H., Wedig, T., Hergt, M., et al. (2009) Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation, J. Mol. Biol., 390, 245-261, https://doi.org/10.1016/j.jmb.2009.04.067.

    Article  CAS  PubMed  Google Scholar 

  41. Pletjushkina, O. J., Rajfur, Z., Pomorski, P., Oliver, T. N., Vasiliev, J. M., et al. (2001) Induction of cortical oscillations in spreading cells by depolymerization of microtubules, Cell Motil. Cytoskeleton, 48, 235-244, https://doi.org/10.1002/cm.1012.

    Article  CAS  PubMed  Google Scholar 

  42. Kanthou, C., and Tozer, G. M. (2002) The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells, Blood, 99, 2060-2069, https://doi.org/10.1182/blood.v99.6.2060.

    Article  CAS  PubMed  Google Scholar 

  43. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L., and Mitchison, T. J. (2005) Non-equilibration of hydrostatic pressure in blebbing cells, Nature, 435, 365-369, https://doi.org/10.1038/nature03550.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Bershadsky, A. D., Tint, I. S., and Svitkina, T. M. (1987) Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts, Cell Motil. Cytoskeleton, 8, 274-283, https://doi.org/10.1002/cm.970080308.

    Article  CAS  PubMed  Google Scholar 

  45. Petrie, R. J., Gavara, N., Chadwick, R. S., and Yamada, K. M. (2012) Nonpolarized signaling reveals two distinct modes of 3D cell migration, J. Cell Biol., 197, 439-455, https://doi.org/10.1083/jcb.201201124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Helfand, B. T., Mendez, M. G., Murthy, S. N., Shumaker, D. K., Grin, B., et al. (2011) Vimentin organization modulates the formation of lamellipodia, Mol. Biol. Cell, 22, 1274-1289, https://doi.org/10.1091/mbc.E10-08-0699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nobes, C. D., and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, 81, 53-62, https://doi.org/10.1016/0092-8674(95)90370-4.

    Article  CAS  PubMed  Google Scholar 

  48. Lowery, J., Kuczmarski, E. R., Herrmann, H., and Goldman, R. D. (2015) Intermediate filaments play a pivotal role in regulating cell architecture and function, J. Biol. Chem., 290, 17145-17153, https://doi.org/10.1074/jbc.R115.640359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, C. Y., Lin, H. H., Tang, M. J., and Wang, Y. K. (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation, Oncotarget, 6, 15966-15983, https://doi.org/10.18632/oncotarget.3862.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Venu, A. P., Modi, M., Aryal, U., Tcarenkova, E., Jiu, Y., et al. (2022) Vimentin supports directional cell migration by controlling focal adhesions, bioRxiv, https://doi.org/10.1101/2022.10.02.510295.

    Article  Google Scholar 

  51. Bergert, M., Chandradoss, S. D., Desai, R. A., and Paluch, E. (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proc. Natl. Acad. Sci. USA, 109, 14434-14439, https://doi.org/10.1073/pnas.1207968109.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Yasuda-Yamahara, M., Rogg, M., Frimmel, J., Trachte, P., Helmstaedter, M., et al. (2018) FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology, Matrix Biol., 68-69, 263-279, https://doi.org/10.1016/j.matbio.2018.01.003.

    Article  CAS  PubMed  Google Scholar 

  53. Petrie, R. J., Harlin, H. M., Korsak, L. I., and Yamada, K. M. (2017) Activating the nuclear piston mechanism of 3D migration in tumor cells, J. Cell Biol., 216, 93-100, https://doi.org/10.1083/jcb.201605097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grant no. 22-15-00347.

Author information

Authors and Affiliations

Authors

Contributions

A.Yu.A. concept and supervision of the study; A.O.Zh., N.S.P., E.A.K., and M.E.L. conducting experiments; A.O.Zh. and M.E.L. writhing text of the paper, A.O.Zh., M.E.L., and A.Yu.A. editing text of the paper.

Corresponding author

Correspondence to Antonina Y. Alexandrova.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zholudeva, A.O., Potapov, N.S., Kozlova, E.A. et al. Impairment of Assembly of the Vimentin Intermediate Filaments Leads to Suppression of Formation and Maturation of Focal Contacts and Alteration of the Type of Cellular Protrusions. Biochemistry Moscow 89, 184–195 (2024). https://doi.org/10.1134/S0006297924010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924010127

Keywords

Navigation