Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer-associated fibroblast exosomes promote prostate cancer metastasis through miR-500a-3p/FBXW7/HSF1 axis under hypoxic microenvironment

Abstract

Metastasis is the main cause of deaths in prostate cancer (PCa). However, the exact mechanisms underlying PCa metastasis are not fully understood. In this study, we discovered pronounced hypoxia in primary lesions of metastatic PCa(mPCa). The exosomes secreted by cancer-associated fibroblasts (CAFs) under hypoxic conditions significantly enhance PCa metastasis both in vitro and in vivo. Through miRNA sequencing and reverse transcription quantitative PCR (RT-qPCR), we found that hypoxia elevated miR-500a-3p levels in CAFs exosomes. Subsequent RT-qPCR, western blotting, and dual luciferase reporter assays identified F-box and WD repeat domain-containing 7(FBXW7) as a target of miR-500a-3p. In addition, immunohistochemistry revealed that FBXW7 expression decreased with the progression of PCa, while heat shock transcription factor 1(HSF1) expression increased. Introducing an FBXW7 plasmid into PCa cells reduced their metastatic potential and significantly lowered HSF1 expression. These findings suggest that CAFs exosomes drive PCa metastasis via the miR-500a-3p/FBXW7/HSF1 axis in a hypoxic microenvironment. Targeting either hypoxia or exosomal miR-500a-3p could be a promising strategy for PCa management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of CAF-CM on the progression of PCa cells under hypoxic microenvironment.
Fig. 2: Roles of CAF-derived exosomes in facilitating PCa progression within the hypoxic TME.
Fig. 3: Profiling distinctively expressed miRNAs in CAF hypoxic and normoxic exosomes.
Fig. 4: Exosomal miR-500a-3p: A Distinctive Indicator of Prostate Cancer Progression.
Fig. 5: FBXW7 was a target gene of miR-500a-3p.
Fig. 6: FBXW7 regulate PCa progression through suppressing HSF1 expression.
Fig. 7: Schematic illustration of the effect of hypoxic exosomes from CAFs on PCa progression.

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are available on request.

References

  1. Ma B, Wells A, Wei L, Zheng J. Prostate cancer liver metastasis: dormancy and resistance to therapy. Semin Cancer Biol. 2021;71:2–9.

    Article  CAS  PubMed  Google Scholar 

  2. Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer. 2022;21:208–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 2017;16:148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jang I, Beningo KA. Integrins, CAFs and mechanical forces in the progression of cancer. Cancers. 2019;11:721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: challenges and opportunities for cancer therapy. Semin Cancer Biol. 2022;85:185–95.

    Article  CAS  PubMed  Google Scholar 

  7. Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 2019;12:84–101.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, et al. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17:120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57–70.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32:466–77.

    Article  CAS  PubMed  Google Scholar 

  11. Dinh P-UC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020;11:1064.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abu El Maaty MA, Terzic J, Keime C, Rovito D, Lutzing R, Yanushko D, et al. Hypoxia-mediated stabilization of HIF1A in prostatic intraepithelial neoplasia promotes cell plasticity and malignant progression. Sci Adv. 2022;8:eabo2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bery F, Figiel S, Kouba S, Fontaine D, Guéguinou M, Potier-Cartereau M, et al. Hypoxia promotes prostate cancer aggressiveness by upregulating EMT-activator Zeb1 and SK3 channel expression. Int J Mol Sci. 2020;21:4786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Martin R, Wang G, Brandão BB, Zanotto TM, Shah S, Kumar Patel S, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 2022;601:446–51.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, et al. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer. 2022;21:87–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gstalder C, Liu D, Miao D, Lutterbach B, DeVine AL, Lin C, et al. Inactivation of Fbxw7 Impairs dsRNA sensing and confers resistance to PD-1 blockade. Cancer Discov. 2020;10:1296–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeh C-H, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 2018;17:115–33.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong B, Jaeger AM, Hughes PF, Loiselle DR, Hauck JS, Fu Y, et al. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1. Sci Transl Med. 2020;12:eabb5647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res. 2021;40:24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020;487:10–20.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, et al. Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Exp Mol Med. 2020;52:1809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia D, Zhou Z, Kwon O-J, Zhang L, Wei X, Zhang Y, et al. Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity. Nat Commun. 2022;13:6828.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Long J, Liu B, Yao Z, Weng H, Li H, Jiang C, et al. miR-500a-3p is a potential prognostic biomarker in hepatocellular carcinoma. Int J Gen Med. 2022;15:1891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang C, Long J, Liu B, Xu M, Wang W, Xie X, et al. miR-500a-3p promotes cancer stem cells properties via STAT3 pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2017;36:99–111.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Tang W, Ren L, Liu T, Yang M, Wei Y, et al. Activation of miR-500a-3p/CDK6 axis suppresses aerobic glycolysis and colorectal cancer progression. J Transl Med. 2022;20:106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin H, Zhang L, Zhang C, Liu P. Exosomal MiR-500a-3p promotes cisplatin resistance and stemness via negatively regulating FBXW7 in gastric cancer. J Cell Mol Med. 2020;24:8930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci. 2022;47:218–34.

    Article  CAS  PubMed  Google Scholar 

  30. Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, et al. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol. 2015;17:322–32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jia G, Wu W, Chen L, Yu Y, Tang Q, Liu H, et al. HSF1 is a novel prognostic biomarker in high-risk prostate cancer that correlates with ferroptosis. Discov Oncol. 2023;14:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZL: formal analysis, investigation, validation, and writing- original draft. Zhemin Lin: formal analysis, visualization, data curation. MJ: and GZ: resources. TX: and FC: visualization. YN Niu and CY: supervision, funding acquisition, and writing – review & editing. This work was supported by the National Natural Science Foundation of China (No.82170783 and 82200859).

Corresponding authors

Correspondence to Yun Cui or Y. N. Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lin, Z., Jiang, M. et al. Cancer-associated fibroblast exosomes promote prostate cancer metastasis through miR-500a-3p/FBXW7/HSF1 axis under hypoxic microenvironment. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00742-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00742-2

Search

Quick links