Skip to main content
Log in

Sodium glucose cotransporter 2 inhibitors with cardiac arrhythmias in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized placebo-controlled trials

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiac arrhythmias, which increases serious morbidity and mortality. Novel hypoglycemic drug sodium glucose cotransporter 2 (SGLT2) inhibitor has shown sufficient cardiovascular benefits in cardiovascular outcome trials.

Objective

This systematic review and meta-analysis aimed to investigate the relationship between SGLT2 inhibitors and cardiac arrhythmias in patients with T2DM.

Methods

We searched on PubMed and ClinicalTrials.gov for at least 24 weeks of randomized double-blind placebo-controlled trials involving T2DM subjects assigned to SGLT2 inhibitors or placebo as of May 5, 2023. Risk ratio (RR) with 95% confidence interval (CI) were used for binary variables. Primary outcomes included atrial arrhythmias, ventricular arrhythmias, bradyarrhythmias, cardiac arrest, and atrial fibrillation/atrial flutter. Secondary outcomes comprised atrial fibrillation, atrial flutter, ventricular fibrillation, ventricular tachycardia, atrioventricular block, and sinus node dysfunction.

Results

We included 32 trials covering 60,594 T2DM patients (SGLT2 inhibitor 35,432; placebo 25,162; mean age 53.9 to 68.5 years). SGLT2 inhibitors significantly reduced the risk of atrial arrhythmias (RR 0.86; 95%CI 0.74–0.99; P = 0.04) or atrial fibrillation/flutter (RR 0.85; 95%CI 0.74–0.99; P = 0.03) compared to placebo; in subgroup analysis, SGLT2 inhibitors achieved a consistent effect with overall results in T2DM with high cardiovascular risk or follow-up > 1 year populations. There was no substantial evidence to suggest that SGLT2 inhibitors reduced the risk of ventricular arrhythmias (RR 0.94; 95%CI 0.71–1.26; P = 0.69) and cardiac arrest (RR 0.88; 95%CI 0.66–1.18; P = 0.39). A neutral effect of SGLT2 inhibitors on bradyarrhythmias was observed (RR 1.02; 95%CI 0.79–1.33; P = 0.85). SGLT2 inhibitors had no significant impact on all secondary outcomes compared to placebo, while it had borderline effect for atrial fibrillation.

Conclusion

SGLT2 inhibitors were associated with a reduced risk of atrial arrhythmias in patients with T2DM. Our results support the use of SGLT2 inhibitors in T2DM with high cardiovascular risk populations. We also recommend the long-term use of SGLT2 inhibitors to achieve further benefits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Marx N, Davies MJ, Grant PJ et al (2021) Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol 9(1):46–52

    Article  CAS  PubMed  Google Scholar 

  2. Joseph JJ, Deedwania P, Acharya T et al (2022) Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American Heart Association. Circulation 145(9):e722–e759

    Article  PubMed  Google Scholar 

  3. Tuttle KR, Brosius FC 3rd, Cavender MA et al (2021) SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: report of a scientific workshop sponsored by the National Kidney Foundation. Am J Kidney Dis 77(1):94–109

    Article  CAS  PubMed  Google Scholar 

  4. Tadic M, Cuspidi C (2015) Type 2 diabetes mellitus and atrial fibrillation: from mechanisms to clinical practice. Arch Cardiovasc Dis 108(4):269–276

    Article  PubMed  Google Scholar 

  5. Movahed MR, Hashemzadeh M, Jamal M (2007) Increased prevalence of ventricular fibrillation in patients with type 2 diabetes mellitus. Heart Vessels 22(4):251–253

    Article  PubMed  Google Scholar 

  6. Mulnier HE, Seaman HE, Raleigh VS et al (2008) Risk of myocardial infarction in men and women with type 2 diabetes in the UK: a cohort study using the General Practice Research Database. Diabetologia 51(9):1639–1645

    Article  CAS  PubMed  Google Scholar 

  7. Movahed MR, Hashemzadeh M, Jamal MM (2005) Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol 105(3):315–318

    Article  PubMed  Google Scholar 

  8. Wang A, Green JB, Halperin JL, Piccini JP Sr (2019) Atrial fibrillation and diabetes mellitus: JACC review topic of the week. J Am Coll Cardiol 74(8):1107–1115

    Article  PubMed  Google Scholar 

  9. Movahed MR, Hashemzadeh M, Jamal MM (2005) Increased prevalence of third-degree atrioventricular block in patients with type II diabetes mellitus. Chest 128(4):2611–2614

    Article  PubMed  Google Scholar 

  10. Al-Khatib SM, Stevenson WG, Ackerman MJ et al (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 72(14):e91–e220

    Article  PubMed  Google Scholar 

  11. Lippi G, Sanchis-Gomar F, Cervellin G (2021) Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. Int J Stroke 16(2):217–221

    Article  PubMed  Google Scholar 

  12. Echouffo-Tcheugui JB, Shrader P, Thomas L et al (2017) Care patterns and outcomes in atrial fibrillation patients with and without diabetes: ORBIT-AF Registry. J Am Coll Cardiol 70(11):1325–1335

    Article  PubMed  Google Scholar 

  13. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  14. Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357

    Article  CAS  PubMed  Google Scholar 

  15. Cannon CP, Pratley R, Dagogo-Jack S et al (2020) Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 383(15):1425–1435

    Article  CAS  PubMed  Google Scholar 

  16. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657

    Article  CAS  PubMed  Google Scholar 

  17. Bell DSH, Goncalves E (2019) Atrial fibrillation and type 2 diabetes: prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes Metab 21(2):210–217

    Article  PubMed  Google Scholar 

  18. Saisho Y (2020) SGLT2 inhibitors: the star in the treatment of type 2 diabetes? Diseases 8(2):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Keefe EL, Sturgess JE, O’Keefe JH, Gupta S, Lavie CJ (2021) Prevention and treatment of atrial fibrillation via risk factor modification. Am J Cardiol 160:46–52

    Article  CAS  PubMed  Google Scholar 

  20. Manolis AA, Manolis TA, Melita H, Manolis AS (2022) Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc Med S1050–1738(22):00062–00067

    Google Scholar 

  21. Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH (2020) SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol 19(1):130

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fernandes GC, Fernandes A, Cardoso R et al (2021) Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Heart Rhythm 18(7):1098–1105

    Article  PubMed  Google Scholar 

  23. Zelniker TA, Bonaca MP, Furtado RHM et al (2020) Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial. Circulation 141(15):1227–1234

    Article  CAS  PubMed  Google Scholar 

  24. Curtain JP, Docherty KF, Jhund PS et al (2021) Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J 42(36):3727–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Z, Jardine MJ, Li Q et al (2021) Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: results from the CREDENCE trial and meta-analysis. Stroke 52(5):1545–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  27. Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  28. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. Available from: www.training.cochrane.org/handbook

  29. Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306

    Article  CAS  PubMed  Google Scholar 

  30. Bailey CJ, Gross JL, Hennicken D, Iqbal N, Mansfield TA, List JF (2013) Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med 11:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey CJ, Morales Villegas EC, Woo V, Tang W, Ptaszynska A, List JF (2015) Efficacy and safety of dapagliflozin monotherapy in people with type 2 diabetes: a randomized double-blind placebo-controlled 102-week trial. Diabet Med 32(4):531–541

    Article  CAS  PubMed  Google Scholar 

  32. Barnett AH, Mithal A, Manassie J et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2(5):369–384

    Article  CAS  PubMed  Google Scholar 

  33. Bode B, Stenlöf K, Harris S et al (2015) Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55–80 years with type 2 diabetes. Diabetes Obes Metab 17(3):294–303

    Article  CAS  PubMed  Google Scholar 

  34. Cefalu WT, Leiter LA, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ (2015) Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care 38(7):1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fioretto P, Del Prato S, Buse JB et al (2018) Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): the DERIVE Study. Diabetes Obes Metab 20(11):2532–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grunberger G, Camp S, Johnson J et al (2018) Ertugliflozin in patients with stage 3 chronic kidney disease and type 2 diabetes mellitus: the VERTIS RENAL randomized study. Diabetes Ther 9(1):49–66

    Article  CAS  PubMed  Google Scholar 

  37. Halvorsen YC, Walford GA, Massaro J, Aftring RP, Freeman MW (2019) A 96-week, multinational, randomized, double-blind, parallel-group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes Metab 21(11):2496–2504

    Article  CAS  PubMed  Google Scholar 

  38. Kovacs CS, Seshiah V, Swallow R et al (2014) Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab 16(2):147–158

    Article  CAS  PubMed  Google Scholar 

  39. Leiter LA, Cefalu WT, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ (2014) Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc 62(7):1252–1262

    Article  PubMed  Google Scholar 

  40. Mathieu C, Ranetti AE, Li D et al (2015) Randomized, double-blind, phase 3 trial of triple therapy with dapagliflozin add-on to saxagliptin plus metformin in type 2 diabetes. Diabetes Care 38(11):2009–2017

    Article  CAS  PubMed  Google Scholar 

  41. Pollock C, Stefánsson B, Reyner D et al (2019) Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 7(6):429–441

    Article  CAS  PubMed  Google Scholar 

  42. Roden M, Merker L, Christiansen AV et al (2015) Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: a double-blind extension of a phase III randomized controlled trial. Cardiovasc Diabetol 14:154

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rosenstock J, Frias J, Páll D et al (2018) Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 20(3):520–529

    Article  CAS  PubMed  Google Scholar 

  44. Rosenstock J, Jelaska A, Zeller C et al (2015) Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 17(10):936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Søfteland E, Meier JJ, Vangen B, Toorawa R, Maldonado-Lutomirsky M, Broedl UC (2017) Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care 40(2):201–209

    Article  PubMed  Google Scholar 

  46. Strojek K, Yoon KH, Hruba V, Sugg J, Langkilde AM, Parikh S (2014) Dapagliflozin added to glimepiride in patients with type 2 diabetes mellitus sustains glycemic control and weight loss over 48 weeks: a randomized, double-blind, parallel-group, placebo-controlled trial. Diabetes Ther 5(1):267–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verma S, Mazer CD, Yan AT et al (2019) Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 140(21):1693–1702

    Article  PubMed  Google Scholar 

  48. Wilding JP, Charpentier G, Hollander P et al (2013) Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 67(12):1267–1282

    Article  CAS  PubMed  Google Scholar 

  49. Wilding JP, Woo V, Soler NG et al (2012) Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 156(6):405–415

    Article  PubMed  Google Scholar 

  50. Yale JF, Bakris G, Cariou B et al (2014) Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab 16(10):1016–1027

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka A, Shimabukuro M, Machii N et al (2019) Effect of empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: results from the multicenter, randomized, placebo-controlled, double-blind EMBLEM trial. Diabetes Care 42(10):e159–e161

    Article  CAS  PubMed  Google Scholar 

  52. A dose finding study to assess the effect of LIK066 compared to placebo or empagliflozin in patients with type 2 diabetes mellitus and heart failure. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03152552. Accessed 20 Jul 2023

  53. Efficacy and safety of sotagliflozin versus placebo and empagliflozin in participants with type 2 diabetes mellitus who have inadequate glycemic control while taking a DPP4 inhibitor alone or with metformin (SOTA-EMPA). ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT03351478. Accessed 20 Jul 2023

  54. Safety and efficacy of bexagliflozin compared to placebo as add-on therapy to metformin in type 2 diabetes subjects. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT03259789. Accessed 20 Jul 2023

  55. Bexagliflozin Efficacy and Safety Trial (BEST). ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT02558296. Accessed 20 Jul 2023

  56. Li HL, Lip GYH, Feng Q et al (2021) Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol 20(1):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sfairopoulos D, Zhang N, Wang Y et al (2022) Association between sodium-glucose cotransporter-2 inhibitors and risk of sudden cardiac death or ventricular arrhythmias: a meta-analysis of randomized controlled trials. Europace 24(1):20–30

    Article  PubMed  Google Scholar 

  58. Usman MS, Siddiqi TJ, Memon MM et al (2018) Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol 25(5):495–502

    Article  PubMed  Google Scholar 

  59. McMurray JJV, Solomon SD, Inzucchi SE et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008

    Article  CAS  PubMed  Google Scholar 

  60. Heerspink HJL, Stefánsson BV, Correa-Rotter R et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446

    Article  CAS  PubMed  Google Scholar 

  61. Packer M, Anker SD, Butler J et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383(15):1413–1424

    Article  CAS  PubMed  Google Scholar 

  62. Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385(16):1451–1461

    Article  CAS  PubMed  Google Scholar 

  63. Fawzy AM, Rivera-Caravaca JM, Underhill P, Fauchier L, Lip GYH (2023) Incident heart failure, arrhythmias and cardiovascular outcomes with sodium-glucose cotransporter 2 (SGLT2) inhibitor use in patients with diabetes: insights from a global federated electronic medical record database. Diabetes Obes Metab 25(2):602–610

    Article  CAS  PubMed  Google Scholar 

  64. Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2(9):1025–1029

    Article  PubMed  Google Scholar 

  65. Shimizu W, Kubota Y, Hoshika Y et al (2020) Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol 19(1):148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee MMY, Brooksbank KJM, Wetherall K et al (2021) Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation 143(6):516–525

    Article  CAS  PubMed  Google Scholar 

  67. Shao Q, Meng L, Lee S et al (2019) Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol 18(1):165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prochaska JH, Jünger C, Schulz A et al (2023) Effects of empagliflozin on left ventricular diastolic function in addition to usual care in individuals with type 2 diabetes mellitus-results from the randomized, double-blind, placebo-controlled EmDia trial. Clin Res Cardiol 112(7):911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chawla G, Chaudhary KK (2019) A complete review of empagliflozin: most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes Metab Syndr 13(3):2001–2008

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the NSFC (82003872), Natural Science Foundation of Hunan Province (2022JJ50163, 2023JJ20034), Scientific Research Fund Project of Hunan Provincial Health Commission (20201973), Central Government Funds for Guiding Local Scientific and Technological Development (2021QZY016), Hunan Province Clinical Medical Technology Innovation Guidance Project (2020SK51823, 2021SK51828, 2021SK51823), Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases (2023SK4040), and the Science and Technology Innovation Program of Hunan Province (2023RC3173).

Author information

Authors and Affiliations

Authors

Contributions

Bo Xu and Jiecan Zhou provided topics and methods, while Bo Xu and Bo Kang completed literature search, research selection, and data extraction. Bo Xu, Bo Kang, and Jiecan Zhou jointly completed the methodological quality assessment. Bo Xu is responsible for data analysis of the entire manuscript, providing tables and figures, and writing the article. All authors have undergone manuscript review. All authors have finally approved the manuscript and submitted it.

Corresponding author

Correspondence to Jiecan Zhou.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Kang, B. & Zhou, J. Sodium glucose cotransporter 2 inhibitors with cardiac arrhythmias in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Res Cardiol (2024). https://doi.org/10.1007/s00392-024-02386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00392-024-02386-6

Keywords

Navigation