Skip to main content
Log in

Dihydroartemisinin abolishes cisplatin-induced nephrotoxicity in vivo

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ghosh S (2019) Cisplatin: the first metal based anticancer drug. Bioorg Chem 88:102925

    Article  CAS  PubMed  Google Scholar 

  2. Tang C, Livingston MJ, Safirstein R, Dong Z (2023) Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 19(1):53–72

    Article  CAS  PubMed  Google Scholar 

  3. Kamaci SC, Kocak G, Yesilova A, Cihan S (2021) Evaluation of acute and chronic nephrotoxicity in patients received cisplatin-based chemotherapy: has anything changed over time? Int Urol Nephrol

  4. Karasawa T, Steyger PS (2015) An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 237(3):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007

    Article  CAS  PubMed  Google Scholar 

  7. Dandekar A, Mendez R, Zhang K (2015) Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 1292:205–214

    Article  CAS  PubMed  Google Scholar 

  8. Mishra V, Banga J, Silveyra P (2018) Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol Ther 181:169–182

    Article  CAS  PubMed  Google Scholar 

  9. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50(6):1352–1364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lopez J, Tait SW (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 112(6):957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sessler T, Healy S, Samali A, Szegezdi E (2013) Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 140(2):186–199

    Article  CAS  PubMed  Google Scholar 

  13. Qi Z, Li W, Tan J, Wang C, Lin H, Zhou B, Liu J, Li P (2019) Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. Phytomedicine 61:152862

    Article  CAS  PubMed  Google Scholar 

  14. Li RY, Zhang WZ, Yan XT, Hou JG, Wang Z, Ding CB, Liu WC, Zheng YN, Chen C, Li YR, Li W (2019) Arginyl-fructosyl-glucose, a major maillard reaction product of red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor kappab and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. J Agric Food Chem 67(20):5754–5763

    Article  CAS  PubMed  Google Scholar 

  15. Li Q, Ma Q, Cheng J, Zhou X, Pu W, Zhong X, Guo X (2021) Dihydroartemisinin as a sensitizing agent in cancer therapies. Onco Targets Ther 14:2563–2573

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Lu J, Liao Y, Liu S, Chen Y, He R, Men L, Lu C, Chen Z, Li S, Xiong G, Yang S (2019) Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed Pharmacother 117:109070

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Zhang J, Shi Y, Xu C, Zhang C, Wong YK, Lee YM, Krishna S, He Y, Lim TK, Sim W, Hua ZC, Shen HM, Lin Q (2017) Mechanistic investigation of the specific anticancer property of artemisinin and its combination with aminolevulinic acid for enhanced anticolorectal cancer activity. ACS Cent Sci 3(7):743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, Li H, Fang L, Zhou Y, Tong X, Wang Y (2021) DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 12(7):705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikeda Y, Hamano H, Horinouchi Y, Miyamoto L, Hirayama T, Nagasawa H, Tamaki T, Tsuchiya K (2021) Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J Trace Elem Med Biol 67:126798

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Yan MH, Liu Y, Liu Z, Wang Z, Chen C, Zhang J, Sun YS (2016) Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients 8(9)

  21. Li N, Sun W, Zhou X, Gong H, Chen Y, Chen D, Xiang F (2019) Dihydroartemisinin protects against dextran sulfate sodium-induced colitis in mice through inhibiting the PI3K/AKT and NF-κB signaling pathways. Biomed Res Int 2019:1415809

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paccez JD, Duncan K, Sekar D, Correa RG, Wang Y, Gu X, Bashin M, Chibale K, Libermann TA, Zerbini LF (2019) Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis 8(3):14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang HW, Huang BS, White RA, Chen A, Ahmad M, Leenen FH (2016) Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II—induced hypothalamic reactive oxygen species and hypertension. Neuroscience 329:112–121

    Article  CAS  PubMed  Google Scholar 

  24. Fayzullina S, Martin LJ (2014) Detection and analysis of DNA damage in mouse skeletal muscle in situ using the TUNEL method. J Vis Exp (94)

  25. Crowe AR, Yue W (2019) Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc 9(24)

  26. Im K, Mareninov S, Diaz MFP, Yong WH (2019) An introduction to performing immunofluorescence staining. Methods Mol Biol 1897:299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan J, Xia Y, Yang M, Zou J, Chen Y, Zhang D, Ma L (2018) Quantitative proteomics analysis of membrane proteins in Enterococcus faecalis with low-level linezolid-resistance. Front Microbiol 9:1698

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S (2014) IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14(20):2280–2285

    Article  CAS  PubMed  Google Scholar 

  29. Hnasko TS, Hnasko RM (2015) The western blot. Methods Mol Biol 1318:87–96

    Article  PubMed  Google Scholar 

  30. Luo Y, Liu L, Zhao J, Jiao Y, Zhang M, Xu G, Jiang Y (2022) PI3K/AKT1 signaling pathway mediates sinomenine-induced hepatocellular carcinoma cells apoptosis: an in vitro and in vivo study. Biol Pharm Bull 45(5):614–624

    Article  CAS  PubMed  Google Scholar 

  31. McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V (2021) Mechanisms of cisplatin-induced acute kidney injury: pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers (Basel) 13(7)

  32. Cheng Z, Qi R, Li L, Liu Q, Zhang W, Zhou X, Xu D, Allen TD, Pan S, Liu J (2018) Dihydroartemisinin ameliorates sepsis-induced hyperpermeability of glomerular endothelium via up-regulation of occludin expression. Biomed Pharmacother 99:313–318

    Article  CAS  PubMed  Google Scholar 

  33. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL (2019) Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci 20(12)

  34. Ozkok A, Edelstein CL (2014) Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014:967826

    Article  PubMed  PubMed Central  Google Scholar 

  35. Casanova AG, Harvat M, Vicente-Vicente L, Pellicer-Valero Ó J, Morales AI, López-Hernández FJ, Martín-Guerrero JD (2021) Regression modeling of the antioxidant-to-nephroprotective relation shows the pivotal role of oxidative stress in cisplatin nephrotoxicity. Antioxidants (Basel) 10(9)

  36. Li YZ, Ren S, Yan XT, Li HP, Li W, Zheng B, Wang Z, Liu YY (2018) Improvement of Cisplatin-induced renal dysfunction by Schisandra chinensis stems via anti-inflammation and anti-apoptosis effects. J Ethnopharmacol 217:228–237

    Article  CAS  PubMed  Google Scholar 

  37. Peiro G, Alary J, Cravedi JP, Rathahao E, Steghens JP, Guéraud F (2005) Dihydroxynonene mercapturic acid, a urinary metabolite of 4-hydroxynonenal, as a biomarker of lipid peroxidation. BioFactors 24(1–4):89–96

    Article  CAS  PubMed  Google Scholar 

  38. Ma ZN, Li YZ, Li W, Yan XT, Yang G, Zhang J, Zhao LC, Yang LM (2017) Nephroprotective effects of saponins from leaves of Panax quinquefolius against cisplatin-induced acute kidney injury. Int J Mol Sci 18(7)

  39. Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, Kellum JA, Ronco C (2016) Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27(2):371–379

    Article  CAS  PubMed  Google Scholar 

  40. Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25(51):6731–6748

    Article  CAS  PubMed  Google Scholar 

  41. Ma X, Dang C, Kang H, Dai Z, Lin S, Guan H, Liu X, Wang X, Hui W (2015) Saikosaponin-D reduces cisplatin-induced nephrotoxicity by repressing ROS-mediated activation of MAPK and NF-κB signalling pathways. Int Immunopharmacol 28(1):399–408

    Article  CAS  PubMed  Google Scholar 

  42. Shen H, Liao B, Wan Z, Zhao Y, You Z, Liu J, Lan J, He S (2021) PTOV1 promotes cisplatin-induced chemotherapy resistance by activating the nuclear factor kappa B pathway in ovarian cancer. Mol Ther Oncolytics 20:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490–2518

    Article  CAS  PubMed  Google Scholar 

  44. Wang YH, Wang WY, Chang CC, Liou KT, Sung YJ, Liao JF, Chen CF, Chang S, Hou YC, Chou YC, Shen YC (2006) Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J Biomed Sci 13(1):127–141

    Article  CAS  PubMed  Google Scholar 

  45. Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18(9):1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher ML, Balinth S, Mills AA (2020) p63-related signaling at a glance. J Cell Sci 133(17)

  47. Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H, Lena AM, Candi E, Terrinoni A, Catani MV, Oren M, Melino G, Krammer PH, Stremmel W, Müller M (2005) TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. Embo J 24(13):2458–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kesavardhana S, Malireddi RKS, Kanneganti TD (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  50. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6(11):1067–1074

    Article  CAS  PubMed  Google Scholar 

  51. Kuribayashi K, Mayes PA, El-Deiry WS (2006) What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther 5(7):763–765

    Article  CAS  PubMed  Google Scholar 

  52. Tsuruya K, Tokumoto M, Ninomiya T, Hirakawa M, Masutani K, Taniguchi M, Fukuda K, Kanai H, Hirakata H, Iida M (2003) Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am J Physiol Renal Physiol 285(2):F208-218

    Article  CAS  PubMed  Google Scholar 

  53. Sen T, Sen N, Huang Y, Sinha D, Luo ZG, Ratovitski EA, Sidransky D (2011) Tumor protein p63/nuclear factor κB feedback loop in regulation of cell death. J Biol Chem 286(50):43204–43213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10(5):995–1005

    Article  CAS  PubMed  Google Scholar 

  55. Cui W, Fang T, Duan Z, Xiang D, Wang Y, Zhang M, Zhai F, Cui X, Yang L (2020) Dihydroartemisinin sensitizes esophageal squamous cell carcinoma to cisplatin by inhibiting sonic hedgehog signaling. Front Cell Dev Biol 8:596788

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang T, Luo R, Li W, Yan H, Xie S, Xiao W, Wang Y, Chen B, Bai P, Xing J (2020) Dihydroartemisinin suppresses bladder cancer cell invasion and migration by regulating KDM3A and p21. J Cancer 11(5):1115–1124

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Haiyang Shu and Mr. Chunyu He for their guidance on bioinformatics analysis in this research.

Funding

This study was supported by National Natural Science Foundation of China (No. 82260793); China Postdoctoral Science Foundation funded project (No. 2020M680834); Jiangxi Provincial Natural Science Foundation (No. 20212BAB216002); The Key R & D Project of Ganzhou Science and Technology Plan Project (2022B-SF8897); The Start-up Fund of Gannan Medical University (No. QD201821); The Science and Technology Project of the Education Department of Jiangxi Province (No. GJJ211517).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YL, YL, and YJ; data curation, YN, XT, YL, and YJ; formal analysis, YJ, LM, YS, YN, XT, LL, YL, and YJ; funding acquisition, YL and YJ; investigation, JZ, YJ, LM, YS, and YJ; methodology, YL, JZ, YL, and YJ; software, YS and YJ; supervision, YL and YJ; validation, YL, JZ, and YJ; writing—original draft, YL, YL, and YJ; writing—review and editing, YL, JZ, YJ, HH, LM, YS, YN, XT, LL, YL, and YJ.

Corresponding authors

Correspondence to Yi Li or Yumao Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zhang, J., Jiao, Y. et al. Dihydroartemisinin abolishes cisplatin-induced nephrotoxicity in vivo. J Nat Med 78, 439–454 (2024). https://doi.org/10.1007/s11418-024-01783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-024-01783-5

Keywords

Navigation