Skip to main content
Log in

Application of tetragonal curves to coupled Boussinesq equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The hierarchy of coupled Boussinesq equations related to a \(4\times 4\) matrix spectral problem is derived by using the zero-curvature equation and Lenard recursion equations. The characteristic polynomial of the Lax matrix is employed to introduce the associated tetragonal curve and Riemann theta functions. The detailed theory of resulting tetragonal curves is established by exploring the properties of Baker–Akhiezer functions and a class of meromorphic functions. The Abel map and Abelian differentials are used to precisely determine the linearization of various flows. Finally, algebro-geometric solutions for the entire hierarchy of coupled Boussinesq equations are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Belokolos, E.D., Bobenko, A.I., Enolskii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    Google Scholar 

  2. Bulla, W., Gesztesy, F., Holden, H., Teschl, G.: Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies. Mem. Am. Math. Soc. 135(641), 1–79 (1998)

    MathSciNet  Google Scholar 

  3. Cheng, Y.: Constraints of the Kadomtsev–Petviashvili hierarchy. J. Math. Phys. 33(11), 3774–3782 (1992)

    ADS  MathSciNet  Google Scholar 

  4. Chowdhury, A.R., Dasgupta, B., Rao, N.N.: Painléve analysis and Backlund transformations for coupled generalized Schrödinger–Boussinesq system. Chaos Solitons Fract. 9(10), 1747–1753 (1998)

    ADS  Google Scholar 

  5. Deift, P., Tomei, C., Trubowitz, E.: Inverse scattering and the Boussinesq equation. Commun. Pure Appl. Math. 35(5), 567–628 (1982)

    MathSciNet  Google Scholar 

  6. Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr. 198, 51–108 (1999)

    MathSciNet  Google Scholar 

  7. Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11(7), 823–879 (1999)

    MathSciNet  Google Scholar 

  8. Dubrovin, B.A.: Theta-functions and nonlinear equations. Russ. Math. Surv. 36(2), 11–92 (1981)

    MathSciNet  Google Scholar 

  9. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surv. 31(1), 59–146 (1976)

    Google Scholar 

  10. Dubrovin, B.A., Novikov, S.P.: Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation. Sov. Phys. JETP 40(6), 1058–1063 (1974)

    ADS  MathSciNet  Google Scholar 

  11. England, M., Eilbeck, J.C.: Abelian functions associated with a cyclic tetragonal curve of genus six. J. Phys. A 42(9), 095210 (2009)

    ADS  MathSciNet  Google Scholar 

  12. Farah, L.G., Pastor, A.: On the periodic Schrödinger–Boussinesq system. J. Math. Anal. Appl. 368(1), 330–349 (2010)

    MathSciNet  Google Scholar 

  13. Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, New York (1992)

    Google Scholar 

  14. Flaschka, H., McLaughlin, D.W.: Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theor. Phys. 55(2), 438–456 (1976)

    ADS  MathSciNet  Google Scholar 

  15. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m+n)\) components. J. Nonlinear Sci. 30(3), 991–1013 (2020)

    ADS  MathSciNet  Google Scholar 

  16. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28(2), 739–763 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  17. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross–Pitaevskii equation. Commun. Math. Phys. 382(1), 585–611 (2021)

    ADS  MathSciNet  Google Scholar 

  18. Geng, X.G., Wu, L.H., He, G.L.: Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys. D 240(16), 1262–1288 (2011)

    MathSciNet  CAS  Google Scholar 

  19. Geng, X.G., Wu, L.H., He, G.L.: Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy. J. Nonlinear Sci. 23(4), 527–555 (2013)

    ADS  MathSciNet  Google Scholar 

  20. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    MathSciNet  Google Scholar 

  21. Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions, Vol. I. \((1+1)\)-Dimensional Continuous Models. Cambridge University Press, Cambridge (2003)

  22. Gesztesy, F., Holden, H., Michor, J., Teschl, G.: Algebro-geometric finite-band solutions of the Ablowitz–Ladik hierarchy. Int. Math. Res. Not. 2007(20), rnm082 (2007)

  23. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Google Scholar 

  24. Hase, Y., Satsuma, J.: An \(N\)-soliton solution for the nonlinear Schrödinger equation coupled to the Boussinesq equation. J. Phys. Soc. Jpn. 57(3), 679–682 (1988)

    ADS  Google Scholar 

  25. Hon, Y.C., Fan, E.G.: A series of exact solutions for coupled Higgs field equation and coupled Schrödinger–Boussinesq equation. Nonlinear Anal. 71(7–8), 3501–3508 (2009)

    MathSciNet  Google Scholar 

  26. Hu, X.B., Guo, B.L., Tam, H.W.: Homoclinic orbits for the coupled Schrödinger–Boussinesq equation and coupled Higgs equation. J. Phys. Soc. Jpn. 72(1), 189–190 (2003)

    ADS  CAS  Google Scholar 

  27. Its, A.R., Kotlyarov, V.P.: Explicit formulas for solutions of the Schrödinger nonlinear equation. Dokl. Akad. Nauk Ukrain. SSR Ser. A 11, 965–968 (1976)

  28. Its, A.R., Matveev, V.B.: Hill operators with a finite number of lacunae. Funct. Anal. Appl. 9(1), 65–66 (1975)

    MathSciNet  Google Scholar 

  29. Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and \(N\)-soliton solutions of the Korteweg–de Vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)

    Google Scholar 

  30. Jia, M.X., Geng, X.G., Wei, J.: Algebro-geometric quasi-periodic solutions to the Bogoyavlensky lattice 2(3) equations. J. Nonlinear Sci. 32(6), 98 (2022)

    ADS  MathSciNet  Google Scholar 

  31. Kac, M., van Moerbeke, P.: On some periodic Toda lattices. Proc. Nat. Acad. Sci. USA 72, 1627–1629 (1975)

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaup, D.J.: On the inverse scattering problem for cubic eigenvalue problems of the class \(\psi _{xxx} + 6Q\psi _x + 6R\psi =\lambda \psi \). Stud. Appl. Math. 62(3), 189–216 (1980)

    MathSciNet  Google Scholar 

  33. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment. Springer, Heidelberg (2008)

    Google Scholar 

  34. Kozel, V.A., Kotlyarov, V.P.: Almost periodic solutions of the sine-Gordon equation. Dokl. Akad. Nauk Ukrain. SSR Ser. A 10, 878–880 (1976)

    Google Scholar 

  35. Krichever, I.M.: Algebraic curves and commuting matrix differential operators. Funct. Anal. Appl. 10(2), 144–146 (1976)

    MathSciNet  Google Scholar 

  36. Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)

    MathSciNet  Google Scholar 

  37. Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv. 32(6), 185–213 (1977)

    MathSciNet  Google Scholar 

  38. Krichever, I.M.: Elliptic solutions of nonlinear integrable equations and related topics. Acta Appl. Math. 36(1–2), 7–25 (1994)

    MathSciNet  Google Scholar 

  39. Krichever, I.M., Novikov, S.P.: Periodic and almost-periodic potentials in inverse problems. Inverse Probl. 15(6), R117–R144 (1999)

    ADS  MathSciNet  Google Scholar 

  40. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schródinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100(4), 3771–3784 (2020)

    Google Scholar 

  41. Lax, P.D.: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28, 141–188 (1975)

    MathSciNet  Google Scholar 

  42. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144(2), 164–184 (2020)

    MathSciNet  CAS  Google Scholar 

  43. Li, R.M., Geng, X.G.: A matrix Yajima–Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions. Commun. Nonlinear Sci. Numer. Simul. 90, 105408 (2020)

    MathSciNet  Google Scholar 

  44. Li, C.X., Ma, W.X., Liu, X.J., Zeng, Y.B.: Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons. Inverse Probl. 23(1), 279–296 (2007)

    ADS  MathSciNet  Google Scholar 

  45. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy I. Proc. R. Soc. A 473(2203), 20170232 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  46. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy II. Proc. R. Soc. A 473(2203), 20170233 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Ma, Y.C., Ablowitz, M.J.: The periodic cubic Schrödinger equation. Stud. Appl. Math. 65(2), 113–158 (1981)

    MathSciNet  Google Scholar 

  48. Makhankov, V.G.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation. Phys. Lett. A 50(1), 42–44 (1974)

    ADS  Google Scholar 

  49. Matsuno, Y.: Kadomtsev–Petviashvili equation with a source and its soliton solutions. J. Phys. A 23(23), L1235–L1239 (1990)

    ADS  MathSciNet  Google Scholar 

  50. Matveev, V.B.: 30 years of finite-gap integration theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 837–875 (2008)

  51. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Google Scholar 

  52. McKean, H.P.: The sine-Gordon and sinh-Gordon equations on the circle. Commun. Pure Appl. Math. 34(2), 197–257 (1981)

    MathSciNet  Google Scholar 

  53. McKean, H.P., van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30(3), 217–274 (1975)

    ADS  MathSciNet  Google Scholar 

  54. Mel’nikov, V.K.: A direct method for deriving a multisoliton solution for the problem of interaction of waves on the \(x\), \(y\) plane. Commun. Math. Phys. 112(4), 639–652 (1987)

    ADS  MathSciNet  Google Scholar 

  55. Miller, P.D., Ercolani, N.M., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz–Ladik equations. Commun. Pure Appl. Math. 48(12), 1369–1440 (1995)

    MathSciNet  Google Scholar 

  56. Miranda, R.: Algebraic Curves And Riemann Surfaces. American Mathematical Society, Providence (1995)

    Google Scholar 

  57. Mu, G., Qin, Z.Y.: Rogue waves for the coupled Schrödinger–Boussinesq equation and the coupled Higgs equation. J. Phys. Soc. Jpn. 81(8), 084001 (2012)

    ADS  Google Scholar 

  58. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the \(N\)-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95(1), 4–6 (1983)

    ADS  MathSciNet  Google Scholar 

  59. Nishikawa, K., Hoji, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion-acoustic waves. Phys. Rev. Lett. 33(3), 148–151 (1974)

    ADS  Google Scholar 

  60. Niu, X.X., Liu, Q.P.: Darboux transformation for Drinfel’d–Sokolov–Wilson equation. Commun. Theor. Phys. 64(5), 491–494 (2015)

    ADS  MathSciNet  Google Scholar 

  61. Novikov, S.P.: A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1974)

    MathSciNet  Google Scholar 

  62. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    Google Scholar 

  63. Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke. Math. J. 52(2), 329–377 (1985)

    MathSciNet  Google Scholar 

  64. Rand, D., Steiglitz, K., Prucnal, P.R.: Multicomponent gap solitons in superposed grating structures. Opt. Lett. 30(13), 1695–1697 (2005)

    ADS  PubMed  Google Scholar 

  65. Rao, N.N.: Integrability of coupled upper-hybrid and magnetoacoustic modes in a magnetized plasma. Phys. Scr. 63(1), 219–223 (1996)

    Google Scholar 

  66. Singh, S.V., Rao, N.N., Shukla, P.K.: Nonlinearly coupled Langmuir and dust-acoustic waves in a dusty plasma. J. Plasma Phys. 60(3), 551–567 (1998)

    ADS  Google Scholar 

  67. Turitsyn, S.K.: Nonstable solitons and sharp criteria for wave collapse. Phys. Rev. E 47(1), R13–R16 (1993)

    ADS  MathSciNet  CAS  Google Scholar 

  68. Wei, J., Geng, X.G., Wang, X., Zhai, Y.Y.: Finite genus solutions of the generalized Merola–Ragnisco–Tu lattice hierarchy. J. Math. Phys. 63(8), 083503 (2022)

    ADS  MathSciNet  Google Scholar 

  69. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371(2), 1483–1507 (2019)

    MathSciNet  Google Scholar 

  70. Yang, B., Yang, J.K.: General rogue waves in the Boussinesq equation. J. Phys. Soc. Jpn. 89(2), 024003 (2020)

    ADS  Google Scholar 

  71. Zakharov, V.E.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys. JETP 38(1), 108–110 (1974)

    ADS  Google Scholar 

  72. Zhao, X.H., Tian, B., Chai, J., Wu, X.Y., Guo, Y.J.: Multi-soliton interaction of a generalized Schrödinger–Boussinesq system in a magnetized plasma. Eur. Phys. J. Plus 132(4), 192 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 11931017, 11971441, 11971442, 12371253) and Natural Science Foundation of Henan Province (Grant No. 232300421074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minxin Jia.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Jia, M., Xue, B. et al. Application of tetragonal curves to coupled Boussinesq equations. Lett Math Phys 114, 30 (2024). https://doi.org/10.1007/s11005-024-01780-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-024-01780-5

Keywords

Mathematics Subject Classification

Navigation