Skip to main content
Log in

Synthesis, supramolecular insight, Hirshfeld surface analyses and optical properties of Fe(II) and Cu(II) complexes of flexible imidazole tethered 1,8-naphthalimide

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two mononuclear complexes of transition metal {Fe(II) and Cu(II)} constructed from 2-(3-(1H-imidazol-1-yl)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (L)and KSCN as auxiliary ligand are reported. Both the complexes were formed in refluxed condition. The complexes were characterized with different spectroscopic tools such as FT-IR, UV–vis, CHN-elemental analysis, photoluminescence. The solid-state structures were determined by single crystal X-ray diffraction method which exhibit that Fe (II) center, in complex 1, is four coordinated distorted tetrahedral geometry whereas Cu(II) center, in complex 2 is five coordinated square pyramidal geometry with slight distortion. The bulk stability was confirmed by powder XRD data. The thermal stability of both complexes was determined by thermogravimetric analysis (TGA). Various types of supramolecular interactions such as O–H…O, C–H…O, ππ, C–H…π and C–H…S were observed in the x-ray structures, and all these interactions guide the formation of 3D supramolecular architecture in the solid-state of both complexes. Besides these, the 2D-fingerprint (2D-FP) and Hirshfeld surface analysis (HSA) computations were served to prove the 2D-network packed crystal lattice interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References:

  1. Oyama ST (1996) Introduction to the chemistry of transition metal carbides and nitrides. Springer, Dordrecht, pp 1–27

    Google Scholar 

  2. Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ (2021) Chem Rev 121(16):9927–10000

    Article  CAS  PubMed  Google Scholar 

  3. Orvig C, Abrams MJ (1999) Chem Rev 99(9):2201–2204

    Article  CAS  PubMed  Google Scholar 

  4. Rusanov DA, Zou J, Babak MV (2022) Pharmaceuticals 15(4):453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Navarrete-Vázquez G, Hidalgo-Figueroa S, Torres-Piedra M, Vergara-Galicia J, Rivera-Leyva JC, Estrada-Soto S, León-Rivera I, Aguilar-Guardarrama B, Rios-Gómez Y, Villalobos-Molina R, Ibarra-Barajas M (2010) Bioorg Med Chem 18:3985

    Article  PubMed  Google Scholar 

  6. Abdel-Rahman LH, Abdelhamid AA, Abu-Dief AM, Shehata MR, Bakheet MA (2020) J Mol Struct 1200:127034

    Article  CAS  Google Scholar 

  7. Marzouk AA, Abu-Dief AM, Abdelhamid AA (2018) Appl Organomet Chem 32:3794

    Article  Google Scholar 

  8. Abu-Dief AM, Abdel-Rahman LH, Abdelhamid AA, Marzouk AA, Shehata MR, Bakheet MA, Almaghrabi OM, Nafady A (2020) Spectrochim Acta Part A Mol Biomol Spectrosc 228:117700

    Article  CAS  Google Scholar 

  9. El-Lateef HMA, Khalaf MMK, Heakal FET, Abdou A (2023) Inorg Chem Commun 158:111486

    Article  Google Scholar 

  10. Abdel-Rahman LH, Abdelhamid AA, Abu-Dief AM, Shehata MR, Bakheet MA (2020) J Mol Struct 1200(15):127034

    Article  CAS  Google Scholar 

  11. Biswas S, Sharma V, Kumar P, Koner AL (2018) Sens Actuators, B Chem 260:460–464

    Article  CAS  Google Scholar 

  12. Liang S, Tong Q, Qin X, Liao X, Li Q, Yan G (2020) Spectrochim Acta Part A Mol Biomol Spectrosc 230:118029

    Article  CAS  Google Scholar 

  13. Liu D, Yin X, Deng X, Shi J, Zhu H, Shang Z, Chen J, Yang G, He H (2019) Inorg Chem Commun 106:43–47

    Article  CAS  Google Scholar 

  14. Liu D, Zhang T, Zhang M, Shi J, Yin L, Shang Z, Zhu H, Yang G, He H (2020) Bioorg Med Chem Lett 30(8):127073

    Article  CAS  PubMed  Google Scholar 

  15. Bai CB, Qiao R, Liao JX, Xiong WZ, Zhang J, Chen SS, Yang S (2018) Spectrochim Acta Part A Mol Biomol Spectrosc 202(5):252–259

    Article  ADS  CAS  Google Scholar 

  16. Fernández-Alonso S, Corrales T, Pablos JL, Catalina F (2018) Sens Actuators, B Chem 270:256–262

    Article  Google Scholar 

  17. Wu H, Jia J, Xu Y, Qian X, Zhu W (2018) Sens Actuators, B Chem 265:59–66

    Article  CAS  Google Scholar 

  18. Rzycka-Korzec R, Malarz K, Gawecki R, Mrozek-Wilczkiewicz A, Grzegorz Małecki J, Schab-Balcerzak E, Korzec M, Polanski J (2021) J Photochem Photobiol A: Chem 415:113314

    Article  CAS  Google Scholar 

  19. Singh I, Luxami V, Paul K (2020) Bioorg Chem 96:103631

    Article  PubMed  Google Scholar 

  20. Anbu S, Paul A, Surendranath K, Sidali A, Pombeiro AJL (2021) J Inorg Biochem 220:111466

    Article  CAS  PubMed  Google Scholar 

  21. Ramu V, Chinta RN, Sulava S, Aradhyula BPR, Jandhyam H, Alone DP, Venkatasubbaiah K (2023) New J Chem 47:14508–14514

    Article  Google Scholar 

  22. Dias GG, Rodrigues MO, Paz ERS, Nunes MP, Araujo MH, Rodembusch FS, da Junior EN (2022) ACS Sens. 7(10):2865–2919

    Article  CAS  PubMed  Google Scholar 

  23. Chinta RVRN, Sulava S, Aradhyula BPR, Jandhyam H, Alone DP, Venkatasubbaiah K (2023) New J Chem 47:14508–14514

    Article  CAS  Google Scholar 

  24. Yu L, Hua XN, Jiang XJ, Qin L, Yan XZ, Luo LH, Han L (2015) Cryst Growth Des 15(2):687–694

    Article  CAS  Google Scholar 

  25. Nath JK, Baruah JB (2014) Inorg Chem Front 1:342–351

    Article  CAS  Google Scholar 

  26. Nath JK, Mondal A, Powell AK, Baruah JB (2014) Cryst Growth Des 14:4735–4748

    Article  CAS  Google Scholar 

  27. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) J Appl Cryst 54:1006–1011

    Article  Google Scholar 

  28. Bruker (2012) Smart Apex II. Bruker AXS Inc., Madison, Wisconsin, USA

  29. Sheldrick GM (2015) Acta Cryst A A71:3–8

    Article  Google Scholar 

  30. Spek AL (2003) PLATON J Appl Cryst 36:7–13

    Article  CAS  Google Scholar 

  31. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2012) J Appl Cryst 53:226–235

    Article  Google Scholar 

  32. Farrugia LJ (2012) J Appl Cryst 45:849–854

    Article  CAS  Google Scholar 

  33. Brandenburg K, Berndt M (1999) Diamond. Crystal impact Gb R, Bonn, Germany

  34. Yang L, Powell DR, Houser RP (2007) Dalton Trans 9:955–964

    Article  Google Scholar 

  35. Nugraha AW, Jahro IS, Onggo D, Martoprawiro MA (2020) J Phys: Conf Ser 1462:012045

    CAS  Google Scholar 

  36. Pinkert D, Keck M, Tabrizi SG, Herwig C, Beckmann F, Braun-Cula B, Kaupp M, Limberg C (2017) Chem Commun 53:8081–8084

    Article  CAS  Google Scholar 

  37. Fargher HA, Sherbow TJ, Haley MM, John DW, Pluth MD (2022) Chem Soc Rev 51:1454–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Addison AW, Rao TN, Reedijk J, Rijn JV, Verschoor GC (1984) J Chem Soc Dalton Trans 7:1349

    Article  Google Scholar 

  39. Nath JK (2023) J Struct Chem 64(6):1021–1039

    Article  CAS  Google Scholar 

  40. Nath JK (2023) J Struct Chem 64(9):1164–1676

    Article  Google Scholar 

  41. Nath JK, Kirillov AM, Baruah JB (2014) RSC Adv 4:47876–47886

    Article  ADS  CAS  Google Scholar 

  42. Ghosh S, Chopra P, Wategaonkar S (2020) Phys Chem Chem Phys 22:17482–17493

    Article  CAS  PubMed  Google Scholar 

  43. Ferchichi A, Makhlouf J, Bakri YE, Saravanan K, Valkonen A, Hashem HE, Ahmad S, Smirani W (2022) Sci Rep 12:15828

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li L, Chen S, Zhou RM, Bai Y, Dang DB (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 120:401–404

    Article  CAS  Google Scholar 

  45. Prenesti E, Berto S (2002) J Inorg Biochem 88:37–43

    Article  CAS  PubMed  Google Scholar 

  46. Gaber M, Mabroukv HE, Al-Shihry S (2001) Egypt J Chem 44:191–200

    CAS  Google Scholar 

  47. Herlinger AW, Wenhold SL, Long TV (1970) J Am Chem Soc 92(22):6474–6481

    Article  CAS  Google Scholar 

  48. Ma LF, Li CP, Wang LY, Du M (2010) Cryst Growth Des 10(6):2641–2649

    Article  CAS  Google Scholar 

  49. Majumdar D, Dey S, Das D, Singh DK, Das S, Bankura K, Mishra D (2019) J Mol Struct 1185:112–120

    Article  ADS  CAS  Google Scholar 

  50. Cotton FA, Wilkinson G (1978) Advanced inorganic chemistry. Wiley Eastern, New Delhi, p 49

    Google Scholar 

  51. Cotton FA, Wilkinson G (1972) Advanced Inorganic Chemistry: A Comprehensive Text, 3rd edn. (Wiley Eastern Limited, New Delhi

  52. Nath JK, Baruah JB (2013) Inorg Chem Commun 30:128–132

    Article  CAS  Google Scholar 

  53. Reger DL, Debreczeni A, Horger Jsmith MD (2011) Cryst Growth Des 11:4068–4079

    Article  CAS  Google Scholar 

  54. Majumdar D, Agrawal Y, Thomas R, Ullah Z, Santra MK, Das S, Pal TK, Bankura K, Mishra D (2019) Appl Organomet Chem 34(1):e5269

    Article  Google Scholar 

  55. Majumdar D, Pal TK, Singh DK, Pandey DK, Parai D, Bankura K, Mishra D (2020) J Mol Struct 1209:127936

    Article  CAS  Google Scholar 

  56. Majumdar D, Das S, Biswas JK, Mondal M (2017) J Mol Struct 1134:617–624

    Article  ADS  CAS  Google Scholar 

  57. Majumdar D, Philip JE, Dubey A, Tufail A, Roy S (2023) Heliyon 9(5):e16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Almeida LR, Carvalho JPS, Napolitano HB, Oliveira SS, Camargo AJ, Figueredo AS, Aquino GLBde, Carvalho-Silva VH (2017) Cryst. Growth Des. 17(10):5145–5153

  59. Pichon A (2013) Nat Chem 5:250

    Article  Google Scholar 

  60. Wolstenholme DJ, Flogeras J, Che FN, Decken A, McGrady GS (2013) J Am Chem Soc 135(7):2439–2442

    Article  CAS  PubMed  Google Scholar 

  61. Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chemie Int Ed 40(13):2382–2426

    Article  CAS  Google Scholar 

Download references

Funding

This work was not supported by any agency.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, synthesis, preparation of the manuscript are done by the corresponding author i.e Jayanta Kr. Nath

Corresponding author

Correspondence to Jayanta Kr. Nath.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1627 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, J.K. Synthesis, supramolecular insight, Hirshfeld surface analyses and optical properties of Fe(II) and Cu(II) complexes of flexible imidazole tethered 1,8-naphthalimide. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00572-z

Navigation