Skip to main content
Log in

Heat Load onto the Globus-M2 Tokamak Wall due to Fast Ion Loss during Development of Toroidal Alfvén Eigenmodes

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of experiments are described, which were performed at the Globus-M2 tokamak and aimed at studying the fast ion loss at the outer tokamak wall due to fast ions interaction with the toroidal Alfvén eigenmodes. The local heating of carbon tiles was experimentally measured, and the corresponding heat flux was calculated. It was shown how simulations of the lost particle orbits can explain the characteristic features of the spatial map of wall heating. The flux of lost fast particles onto the wall was studied as a function of the instability amplitude. It has been demonstrated that the simulations predict similar dependence of the fast ion flux on the instability amplitude and also correlate its nature to the peculiarities of fast ions spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. L. Chen and F. Zonca, Rev. Mod. Phys. 88, 015008 (2016).

  2. K. G. McClements and E. D. Fredrickson, Plasma Phys. Controlled Fusion 59, 053001 (2017).

  3. W. W. Heidbrink and R. B. White, Phys. Plasmas 27, 030901 (2020).

  4. Yu. V. Petrov, N. N. Bakharev, V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, A. A. Martynov, S. Yu. Medvedev, V. B. Minaev, M. I. Patrov, A. V. Petrov, N. V. Sakharov, P. B. Shchegolev, A. Yu. Tel’nova, S. Yu. Tolstyakov, and A. Yu. Yashin, Plasma Phys. Rep. 45, 723 (2019).

    Article  ADS  Google Scholar 

  5. Yu. V. Petrov, N. N. Bakharev, V. K. Gusev, V. B. Minaev, V. A. Kornev, G. S. Kurskiev, M. I. Patrov, N. V. Sakharov, S. Yu. Tolstyakov, and P. B. Shchegolev, J. Plasma Phys. 81, 515810601 (2015).

  6. N. N. Bakharev, F. V. Chernyshev, P. R. Goncharov, V. K. Gusev, A. D. Iblyaminova, V. A. Kornev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, S. Yu. Tolstyakov, et al., Nucl. Fusion 55, 043023 (2015).

  7. N. N. Bakharev, I. M. Balachenkov, F. V. Chernyshev, V. K. Gusev, M. V. Ilyasova, E. M. Khilkevitch, N. A. Khromov, E. O. Kiselev, and V. A. Kornev, Phys. Plasmas 30, 072507 (2023).

  8. I. M. Balachenkov, Yu. V. Petrov,V. K. Gusev, N. N. Bakharev, V. V. Bulanin, V. I. Varfolomeev, N. S. Zhil’tsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, A. M. Ponomarenko, N. V. Sakharov, A. Yu. Tel’nova, et al., Tech. Phys. Lett. 46, 1157 (2020).

    Article  CAS  ADS  Google Scholar 

  9. I. M. Balachenkov, N. N. Bakharev, V. I. Varfolomeev, V. K. Gusev, M. V. Il’yasova, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, O. M. Skrekel’, A. Yu. Tel’nova, E. M. Khil’kevich, A. E. Shevelev, and P. B. Shchegolev, Tech. Phys. 67 (1), 25 (2022).

    Article  Google Scholar 

  10. V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev, et al., Nucl. Fusion 57, 066047 (2017).

  11. Yu. V. Petrov, V. K. Gusev, N. V. Sakharov, V. B. Minaev, V. I. Varfolomeev, V. V. Dyachenko, I. M. Balachenkov, N. N. Bakharev, E. N. Bondarchuk, V. V. Bulanin, F. V. Chernyshev, M. V. Iliasova, A. A. Kavin, E. M. Khilkevich, N. A. Khromov, et al., Nucl. Fusion 62, 042009 (2022).

  12. N. N. Bakharev, I. M. Balachenkov, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. V. D’yachenko, M. V. Il’yasova, E. O. Kiselev, A. N. Konovalov, G. S. Kurskiev, A. D. Mel’nik, V. B. Minaev, I. V. Miroshnikov, A. N. Novokhatskii, M. I. Patrov, et al., Plasma Phys. Rep. 46, 675 (2020).

    Article  ADS  Google Scholar 

  13. A. Yu. Telnova, V. B. Minaev, P. B. Shchegolev, N. N. Bakharev, I. V. Shikhovtsev, and V. I. Varfolomeev, J. Phys.: Conf. Ser. 1400, 077015 (2019).

  14. V. K. Gusev, A. V. Dech, L. A. Esipov, V. B. Minaev, A. G. Barsukov, G. B. Igon’kina, V. V. Kuznetsov, A. A. Panasenkov, M. M. Sokolov, G. N. Tilinin, A. V. Lupin, and V. K. Markov, Tech. Phys. 52, 1127 (2007).

    Article  CAS  Google Scholar 

  15. N. V. Sakharov, A. V. Voronin, V. K. Gusev, A. A. Kavin, S. N. Kamenshchikov, K. M. Lobanov, V. B. Minaev, A. N. Novokhatskii, M. I. Patrov, Yu. V. Petrov, and P. B. Shchegolev, Plasma Phys. Rep. 41, 997 (2015).

    Article  ADS  Google Scholar 

  16. A. B. Izvozchikov, M. P. Petrov, S. Ya. Petrov, F. V. Chernyshev, and I. V. Shustov, Sov. Phys. Tech. Phys. 37, 201 (1992).

    Google Scholar 

  17. N. N. Bakharev, A. D. Melnik, and F. V. Chernyshev, Atoms 11, 53 (2023).

    Article  CAS  ADS  Google Scholar 

  18. N. N. Bakharev, I. M. Balachenkov, F. V. Chernyshev, V. K. Gusev, E. O. Kiselev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, V. G. Nesenevich, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, O. M. Skrekel, A. Yu. Telnova, et al., Plasma Phys. Controlled Fusion 63, 125036 (2021).

  19. V. V. Bulanin, I. M. Balachenkov, V. I. Varfolomeev, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. VC. Petrov, Yu. V. Petrov, A. M. Ponomarenko, A. Yu. Tel’nova, P. B. Schegolev, and A. Yu. Yashin, Tech. Phys. Lett. 47, 197 (2021).

    Article  ADS  Google Scholar 

  20. M. M. Larionova, I. V. Miroshnikov, V. K. Gusev, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Schegolev, A. Yu. Telnova, and N. N. Bakharev, J. Phys.: Conf. Ser. 1400, 077018 (2019).

  21. A. Yu. Tel’nova, I. V. Miroshnikov, M. M. Mitrankova, N. N. Bakharev, V. K. Gusev, N. S. Zhil’tsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, and E. A. Tukhmeneva, Tech. Phys. Lett. 47, 470 (2021).

    Article  ADS  Google Scholar 

  22. N. N. Bakharev, F. V. Chernyshev, V. K. Gusev, E. O. Kiselev, G. S. Kurskiev, M. I. Larionova, A. D. Melnik, V. B. Minaev, M. I. Mironov, I. V. Miroshnikov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, O. M. Skrekel, A. Yu. Telnova, et al., Plasma Phys. Controlled Fusion 62, 125010 (2020).

  23. G. S. Kurskiev, S. Yu. Tolstyakov, A. A. Berezutskii, V. K. Gusev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, and P. V. Chernakov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 35 (2), 81 (2012).

    Google Scholar 

  24. E. A. Tukhmeneva, S. Yu. Tolstyakov, G. S. Kurskiev, V. K. Gusev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. Yu. Tel’nova, N. N. Bakharev, P. B. Shchegolev, and E. O. Kiselev, Plasma Sci. Technol. 21, 105104 (2019).

  25. E. A. Tukhmeneva, N. N. Bakharev, V. I. Varfolomeev, V. K. Gusev, N. S. Zhil’tsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. D. Sladkomedova, A. Yu. Tel’nova, S. Yu. Tolstyakov, and P. B. Shchegolev, Tech. Phys. Lett. 47, 56 (2021).

    Article  CAS  ADS  Google Scholar 

  26. L. L. Lao, H. St. John, R. D. Stambaugh, A. G. Kellman, and W. Pfeiffer, Nucl. Fusion 25, 1611 (1985).

    Article  CAS  Google Scholar 

  27. D. J. Sigmar, C. T. Hsu, R. White, and C. Z. Cheng, Phys. Fluids B 4, 1506 (1992).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  28. A. Pankin, D. McCune, R. Andre, G. Bateman, and A. Kritz, Comput. Phys. Commun. 159, 157 (2004).

    Article  CAS  ADS  Google Scholar 

  29. K. Cole, J. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Greens Functions (CRC Press, Boca Raton, 2010).

    Book  Google Scholar 

  30. R. Kh. Zalavutdinov, A. E. Gorodetskii, A. P. Zakharov, V. K. Gusev, and A. N. Novokhatskii, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 34 (1), 39 (2011).

    Google Scholar 

  31. N. N. Bakharev, V. V. Bulanin, F. V. Chernyshev, V. K. Gusev, N. A. Khromov, E. O. Kiselev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, I. V. Miroshnikov, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, et al., Nucl. Fusion 58, 126029 (2018).

  32. M. Garcia-Muñoz, N. Hicks, R. van Voornveld, I. G. J. Classen, R. Bilato, V. Bobkov, M. Brambilla, M. Bruedgam, H.-U. Fahrbach, V. Igochine, S. Jaemsae, M. Maraschek, K. Sassenberg, and the ASDEX Upgrade Team, Nucl. Fusion 50, 084004 (2010).

  33. W. W. Heidbrink, C. S. Collins, M. Podesta, G. J. Kramer, D. C. Pace, C. C. Petty, L. Stagner, M. A. Van Zeeland, R. B. White, and Y. B. Zhu, Phys. Plasmas 24, 056109 (2017).

  34. W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008).

Download references

Funding

The work was carried out at the unique scientific facility “Globus-M Spherical Tokamak.” The experimental studies of fast ions and related calculations (Sections 1, 2.2, 2.3, 3, 4, 5) were supported by the Russian Science Foundation (project no. 21-72-20007). Preparation of the tokamak diagnostics (Section 2.1) was supported by the Ioffe Institute under the State Contract no. 0040-2019-0023. The preparation of the neutral injection complex (Section 2.1) was supported by the Ioffe Institute under the State Contract no. 0034-2021-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Bakharev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakharev, N.N., Balachenkov, I.M., Varfolomeev, V.I. et al. Heat Load onto the Globus-M2 Tokamak Wall due to Fast Ion Loss during Development of Toroidal Alfvén Eigenmodes. Plasma Phys. Rep. 49, 1524–1532 (2023). https://doi.org/10.1134/S1063780X23601384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601384

Keywords:

Navigation