Skip to main content
Log in

Thermodynamic Properties and Equation of State for Alpha-Alumina

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A high-temperature equation of state (EoS) for alpha-alumina (corundum) with a hexagonal close-packed (hcp) lattice was derived herein using experimental data on the thermodynamic properties, thermal expansion, compressibility and temperature-dependent bulk compression modulus. The experimental data were co-optimized using the temperature-dependent Tait equation over a pressure range from 0 to 1677 kbar and over a temperature range from 20 to 2327 K. The temperature dependence of thermodynamic and thermophysical parameters was fitted by an extended Einstein model. For the Tait equation, the isothermal bulk compression modulus and its pressure derivative at 0 K were estimated to be 2570.3 kbar and 4.1944, respectively. The temperature derivative of the bulk compression modulus was estimated to be 2.10·10–4 K–1. The obtained EoS provides a good fit to the whole set of the experimental data within the measurement error of individual parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire. Material, Manufacturing, applications (Springer, New York, 2009)

    Google Scholar 

  2. K. Syassen, High Press. Res. 28, 75 (2008)

    Article  ADS  CAS  Google Scholar 

  3. T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Springer, New York, 1999)

    Book  Google Scholar 

  4. O.L. Anderson, T. Goto, Phys. Earth Planet. In. 55, 241 (1989)

    Article  ADS  CAS  Google Scholar 

  5. VYu. Bodryakov, A.A. Bykov, Glass Ceram. 72, 67 (2015)

    Article  CAS  Google Scholar 

  6. E.L. Baker, C. Capellos, L. Stiel, JAGUAR procedures for detonation properties of aluminized explosives (in: Proc. 12-th Int. Detonation Symposium, San Diego, CA, US Naval Research Office, 2002, 195)

  7. L. Fried, W.M. Howard, J. Chem. Phys. 110, 12023 (1999)

    Article  ADS  CAS  Google Scholar 

  8. M. Braithwaite, N.L. Allan, Thermodynamic representation for solid products in ideal detonation predictions (in: Proc. 12-th Int. Detonation Symposium, San Diego, CA, US Naval Research Office, 2002, 601)

  9. L. Fried, W.M. Howard, P.C. Souers, EXP6: A new equation of state library for high-pressure thermochemistry (in: Proc. 12-th Int. Detonation Symposium, San Diego, CA, US Naval Research Office, 2002, 567)

  10. N.V. Kozyrev, V.V. Gordeev, Crystals 13, 01470 (2023)

    Article  CAS  Google Scholar 

  11. M. Chase, I. Ansara, A. Dinsdale, G. Eriksson, G. Grimvall, H. Hoglund, H. Yokokawa, Calphad 19, 437 (1995)

    Article  CAS  Google Scholar 

  12. G.F. Voronin, I.B. Kutsenok, J. Chem. Eng. Data 58, 2083 (2013)

    Article  CAS  Google Scholar 

  13. P. Jacobson, S. Stoupin, Diamond Relat. Mat. 97, 107469 (2019)

    Article  ADS  CAS  Google Scholar 

  14. J.R. MacDonald, Rev. Modern Phys. 41, 316 (1969)

    Article  ADS  Google Scholar 

  15. J.H. Dymond, R. Malhotra, Int. J. Thermophys. 9, 941 (1988)

    Article  ADS  Google Scholar 

  16. P.I. Dorogokupets, E.M. Ponomarev, E.A. Melekhova, Optimization of experimental data on the heat capacity, volume, and bulk moduli of minerals. Petrology 7, 574 (1999)

    Google Scholar 

  17. V.Y. Chekhovskoi, High Temp. 2, 296 (1964). ((In Russian))

    CAS  Google Scholar 

  18. M.A. Reshetnikov, Enthalpy equation for corundum from 0 to 2200 K. Zh. Fiz. Khim. 43, 2238 (1969). ([In Russian])

    CAS  Google Scholar 

  19. V.P. Glushko, Termodinamicheskie Svoistva Individual’nykh Veshchestv [Thermodynamic Properties of Individual Substances] (3-rd ed.; Nauka: Moscow, Russia, 1981; Vol. III, Book 2). [In Russian]

  20. Standard reference material 720. Synthetic sapphire (α-Al2O3) (NBS Certificate, Washington, DC, 1982)

  21. R. Castanet, High Temp. High Press. 16, 449 (1984)

    CAS  Google Scholar 

  22. D.G. Archer, J. Phys. Chem. Ref. Data 22, 1441 (1993)

    Article  ADS  CAS  Google Scholar 

  23. M.W. Chase, NIST-JANAF Thermochemical Tables (4-th ed. J. Phys. Chem. Ref. Data. Monograph 9. 1. 1998)

  24. R. Sabbah, X.W. An, J.S. Chickos, M.L. Planas Leitão, M.V. Roux, L.A. Torres, Thermochim. Acta 331, 93 (1999)

    Article  CAS  Google Scholar 

  25. J.-P. Jan, S. Steinemann, P. Dinichert, J. Phys. Chem. Solids 12, 349 (1960)

    Article  ADS  Google Scholar 

  26. K.T. Jacob, C.K. Behera, Metall. Mater. Trans. B 31B, 1323 (2000)

    Article  ADS  CAS  Google Scholar 

  27. T.A. Hahn, Standard Reference Material 732. Single crystal sapphire - thermal expansion (NBS Certificate, Washington, DC, 1977)

  28. A. Cooper, Acta Crystallogr. 15, 578 (1962)

    Article  CAS  Google Scholar 

  29. R.E. Newnham, Y.M. de Haart, Z. Kristallogr. 117, 235 (1962)

    Article  CAS  Google Scholar 

  30. G.K. Lewis, H.G. Drickamer, J. Chem. Phys. 45, 224 (1966)

    Article  ADS  CAS  Google Scholar 

  31. H.E. Steinwehr, Z. Kristallogr. 125, 377 (1967)

    Article  Google Scholar 

  32. D.H. Chung, G. Simmons, J. Appl. Phys. 39, 5316 (1968)

    Article  ADS  CAS  Google Scholar 

  33. Baldock, P.J., W.E. Spindler, T.W. Baker, An X-ray study of the variation of the lattice parameters of alumina, magnesia, and thoria up to 2000° (Report AERE-R-5674, U.K. At. Energy Auth., Res. Group, At. Energy Res. Estab. 1968)

  34. D.E. Gray, American Institute of Physics handbook (McGraw-Hill, New York, 1972)

    Google Scholar 

  35. W.M. Yim, R.J. Paff, J. Appl. Phys. 45, 1456 (1974)

    Article  ADS  CAS  Google Scholar 

  36. K.M. Krupka, R.A. Robie, B.S. Am, Mineral. 64, 86 (1979)

    CAS  Google Scholar 

  37. D.E. Cox, A.R.Moodenbaugh, A.W. Sleight, H.Y. Chen, Structural refinement of neutron and x-ray data by the Rietveld method: application to Al2O3 and BiVO4 [In S. Block, C.R. Hubbard. Accuracy in Powder Diffraction, NBS (US) Spec. Publ. No. 567. 1980]. pp. 189–201.

  38. P. Thompson, I.G. Wood, J. Appl. Crystallogr. 16, 458 (1983)

    Article  ADS  CAS  Google Scholar 

  39. P. Aldebert, J.P. Traverse, High Temp. High Press. 16, 127 (1984)

    CAS  Google Scholar 

  40. W.E. Lee, K.P.D. Lagerlof, J. Electron Micr. Tech. 2, 247 (1985)

    Article  CAS  Google Scholar 

  41. I. Ohno, S. Yamamoto, O.L. Anderson, J. Noda, J. Phys. Chem. Solids 47, 1103 (1986)

    Article  ADS  CAS  Google Scholar 

  42. P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20, 79 (1987)

    Article  ADS  CAS  Google Scholar 

  43. E. Izumi, H. Asano, H. Murata, N. Watanabe, J. Appl. Crystallogr. 20, 411 (1987)

    Article  ADS  CAS  Google Scholar 

  44. T. Goto, S. Yamamoto, I. Ohno, O.L. Anderson, J. Geophys. Res. 94, 7588 (1989)

    Article  ADS  CAS  Google Scholar 

  45. A. Kirfel, K. Eichhorn, Acta Crystallogr. A 46, 271 (1990)

    Article  ADS  Google Scholar 

  46. L. Lutterotti, P. Scardi, J. Appl. Crystallogr. 23, 246 (1990)

    Article  ADS  CAS  Google Scholar 

  47. A.S. Brown, M.A. Spackman, R.J. Hill, Acta Crystallogr. A 49, 513 (1993)

    Article  ADS  Google Scholar 

  48. H. Sawada, Mater. Res. Bull. 29, 127 (1994)

    Article  CAS  Google Scholar 

  49. X.L. Wang, C.R. Hubbard, K.B. Alexander, P.F. Becher, J. Am. Ceram. Soc. 77, 1569 (1994)

    Article  CAS  Google Scholar 

  50. S.V. Stankus, P.V. Tyagelsky, Int. J. Thermophys. 15, 309 (1994)

    Article  ADS  CAS  Google Scholar 

  51. R.G. Munro, J. Am. Ceram. Soc. 80, 1919 (1997)

    Article  CAS  Google Scholar 

  52. F.R. Feret, D. Roy, C. Boulanger, Spectrochim. Acta B. 55, 1051 (2000)

    Article  ADS  Google Scholar 

  53. D.M. Tobbens, N. Stuber, K. Knorr, H.M. Mayer, G. Lampert, Mater. Sci. Forum 378–381, 288 (2001)

    Article  Google Scholar 

  54. Yu.V. Shvyd’ko, M. Lucht, E. Gerdau, M. Lerche, E.E. Alp, W. Sturhahn, J. Sutter, T.S. Toellner, J. Synchrotron Radiat. 9, 17 (2002)

    Article  CAS  Google Scholar 

  55. C.J. Ball, Powder Diffr. 21, 19 (2006)

    Article  ADS  CAS  Google Scholar 

  56. H. Chikh, F. Si-Ahmed, A. Afir, A. Pialoux, Int. J. Recent Dev Eng. Tech. 3, 137 (2014)

    Google Scholar 

  57. Standard Reference Material 1976b. Instrument Response Standard for X-Ray Powder Diffraction. (NIST Certificate, Gaithersburg, MD, 2015)

  58. H. Chikh, F.S. Ahmed, A. Afir, A. Pialoux, J. Alloys Compd. 654, 509 (2016)

    Article  CAS  Google Scholar 

  59. G. Grabowski, R. Lach, Z. Pędzich, K. Świerczek, A. Wojteczko, Arch. Civ. Mech. Eng. 18, 188 (2018)

    Article  Google Scholar 

  60. P. Fabrykiewicz, R. Przeniosło, I. Sosnowska, F. Fauth, Acta Crystallogr. B 74, 1 (2018)

    Article  Google Scholar 

  61. Standard Reference Material 1976c. Instrument Response Standard for X-Ray Powder Diffraction (NIST Certificate, Gaithersburg, MD, 2021)

  62. L. Zhao, H. Che, B. Li, S. Zhang, Determination of unit cell parameters of α-alumina reference material [In S. Broek (ed.) Light Metals. The Minerals, Metals & Materials Series. Springer Nature, Cham. 2023] Pp. 213–218.

  63. T. Zienert, C.G. Aneziris, Crystals 13, 743 (2023)

    Article  CAS  Google Scholar 

  64. L.W. Finger, R.M. Hazen, J. Appl. Phys. 49, 5823 (1978)

    Article  ADS  CAS  Google Scholar 

  65. H. d’Amour, D. Schiferl, W. Denner, H. Schulz, W.B. Holzapfel, J. Appl. Phys. 49, 4411 (1978)

    Article  ADS  CAS  Google Scholar 

  66. L.D. Calvert, E.J. Gabe, Y. Le Page, Acta Crystallogr. A 37, C314 (1981)

    Article  Google Scholar 

  67. J. Lewis, D. Schwarzenbach, H.D. Flack, Acta Crystallogr. A 38, 733 (1982)

    Article  ADS  Google Scholar 

  68. V.G. Tsirelson, M.Y. Antipin, R.G. Gerr, R.P. Ozerov, Y.T. Struchkov, T. Yu, Phys. Status Solidi A 87, 425 (1985)

    Article  ADS  CAS  Google Scholar 

  69. J. Kim-Zajonz, S. Werner, H. Schulz, Z. Kristallogr. 214, 331 (1999)

    Article  CAS  Google Scholar 

  70. W. Wong-Ng, T. Siegrist, G.T. DeTitta et al., J. Res. Natl. Inst. Stand. 106, 1071 (2001)

    Article  CAS  Google Scholar 

  71. H.V. Hart, H.G. Drickamer, J. Chem. Phys. 43, 2265 (1965)

    Article  ADS  CAS  Google Scholar 

  72. Y. Sato, S. Akimoto, J. Appl. Phys. 50, 5285 (1979)

    Article  ADS  CAS  Google Scholar 

  73. J. Xu, High Temp. High Press. 19, 661 (1987)

    CAS  Google Scholar 

  74. J.F. Lin, O. Degtyareva, C.T. Prewitt et al., Nature Mater. 3, 389 (2004)

    Article  ADS  CAS  Google Scholar 

  75. A. Dewaele, M. Torrent, Phys. Rev. B 88, 064107 (2013)

    Article  ADS  Google Scholar 

  76. P. Richet, J.A. Xu, H. Mao, Phys. Chem. Miner. 16, 207 (1988)

    Article  ADS  CAS  Google Scholar 

  77. A.P. Jephcoat, R.J. Hemley, H.K. Mao, Physica B&C. 150, 115 (1988)

    Article  ADS  CAS  Google Scholar 

  78. L.S. Dubrovinsky, S.K. Saxena, P. Lazor, Phys. Chem. Miner. 25, 434 (1998)

    Article  ADS  CAS  Google Scholar 

  79. P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov, Geodyn. Tectonophys. 3, 129 (2012)

    Article  Google Scholar 

  80. G. Fiquet, P. Richet, G. Montagnac, Phys. Chem. Miner. 27, 103 (1999)

    Article  ADS  CAS  Google Scholar 

  81. N. Ishizawa, T. Miyata, I. Minato, F. Marumo, S. Iwai, Acta Crystallogr. B 36, 228 (1980)

    Article  ADS  Google Scholar 

  82. P.G. Strelkov, I.I. Lifanov, N.G. Sherstyukov, Meas. Tech. 9, 994 (1966)

    Article  Google Scholar 

  83. H. Kudielka, Monatsh. Chem. 103, 72 (1972)

    Article  CAS  Google Scholar 

  84. M. Lucht, M. Lerche, H.-C. Wille, Yu.V. Shvyd’ko, H.D. Ruter, E. Gerdau, P. Becker, J. Appl. Crystallogr. 36, 1075 (2003)

    Article  ADS  CAS  Google Scholar 

  85. A. Miyake, M. Takaya, Y. Kodama, S. Ohi, Thermal expansion of forsterite (Mg2SiO4), corundum (α-Al2O3), and platinum (Pt) to 1713 K (Photon Factory Activity Report 2010. №28. Part B. National Laboratory for High Energy Physics, Japan. 2011) P. 195.

  86. R.E. Hankey, D.E. Schuele, J. Acoust. Soc. Am. B 48, 190 (1970)

    Article  ADS  CAS  Google Scholar 

  87. R. Tarumi, H. Ledbetter, H. Ogi, M. Hirao, Philos. Mag. 93, 4532 (2013)

    Article  ADS  CAS  Google Scholar 

  88. E. Schreiber, O.L. Anderson, J. Am. Ceram. Soc. 49, 184 (1966)

    Article  CAS  Google Scholar 

  89. J.B. Wachtman, W.E. Tefft, D.G. Lam, R.P. Stinchfield, J. Res. Nat. Bur. Stand. 64A, 213 (1960)

    Article  CAS  Google Scholar 

  90. W.G. Mayer, E.A. Hiedemann, J. Acoust. Soc. Am. 32, 1699 (1960)

    Article  ADS  Google Scholar 

  91. B.T. Bernstein, J. Appl. Phys. 34, 169 (1963)

    Article  ADS  CAS  Google Scholar 

  92. W. Tefft, J. Res. NBS A. Phys. Ch. 70, 277 (1966)

    Article  CAS  Google Scholar 

  93. J.H. Gieske, Phys. Status Solidi B 29, 121 (1968)

    Article  ADS  CAS  Google Scholar 

  94. J.A. Salem, Z. Li, R.C. Bradt, Thermal expansion and elastic anisotropy in single crystal A12O3 and SiC reinforcements (NASA TM-106516. National Aeronautics and Space Administration. Washington, D.C. 1994)

  95. J.R. Gladden, J.H. So, J.D. Maynard, P.W. Saxe, Y. Le Page, Appl. Phys. Lett. 85, 392 (2004)

    Article  ADS  CAS  Google Scholar 

  96. D.B. Hovis, A. Reddy, A.H. Heuer, Appl. Phys. Lett. 88, 131910 (2006)

    Article  ADS  Google Scholar 

  97. N. Soga, O.L. Anderson, J. Am. Ceram. Soc. 49, 355 (1966)

    Article  CAS  Google Scholar 

  98. R.R. Reeber, K. Wang, MRS Proc. 622, 35 (2000)

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 121061600076-0).

Author information

Authors and Affiliations

Authors

Contributions

The author solely contributed to the manuscript.

Corresponding author

Correspondence to Nikolay V. Kozyrev.

Ethics declarations

Competing Interests

The author declares no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, N.V. Thermodynamic Properties and Equation of State for Alpha-Alumina. Int J Thermophys 45, 37 (2024). https://doi.org/10.1007/s10765-024-03337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03337-z

Keywords

Navigation