Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A charge-neutral organic cage selectively binds strongly hydrated sulfate anions in water

Abstract

In biological systems, enzymes and transport proteins can bind anions in aqueous media solely by forming hydrogen bonds with charge-neutral motifs. Reproducing this functionality in synthetic systems presents challenges and incurs high costs, particularly when targeting strongly hydrated anions such as sulfate. Here we report a [2.2.2]urea cryptand (cage), synthesized in one pot, that selectively binds sulfate in a mixture of dimethyl sulfoxide and water and in water with affinities in the micromolar to millimolar range. The neutral cage bearing six urea groups donates 12 strong hydrogen bonds to encapsulate a sulfate anion, showing favourable enthalpy even in pure water. Sulfate binding can be further enhanced by using micelles to provide a low-polarity microenvironment. The cage finds utility in analysing divalent anions in water and beverage samples or in removing sulfate. The work demonstrates the achievability of robust and selective anion binding in water with minimal synthetic efforts, by using neutral NH hydrogen bonds akin to those found in biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compound structures and synthesis.
Fig. 2: Crystal structure and conformations from MD simulations.
Fig. 3: NMR, crystallographic and isothermal calorimetry anion binding studies of 1.
Fig. 4: The SO42– binding by 1 in micelles and liquid–liquid extraction.
Fig. 5: NMR spectra with and without anions.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the manuscript and its Supplementary Information. The raw data have been deposited in Figshare at https://doi.org/10.6084/m9.figshare.21776117. Crystallographic data for the structures reported have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2220230 (1), 2223225 (1–TBA2SO4) and 2220513 (4–TBA2SO4). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Wu, X., Gilchrist, A. M. & Gale, P. A. Prospects and challenges in anion recognition and transport. Chem 6, 1296–1309 (2020).

    CAS  Google Scholar 

  2. McNaughton, D. A. et al. New insights and discoveries in anion receptor chemistry. Chem 9, 3045–3112 (2023).

    CAS  Google Scholar 

  3. Langton, M. J., Serpell, C. J. & Beer, P. D. Anion recognition in water: recent advances from a supramolecular and macromolecular perspective. Angew. Chem. Int. Ed. 55, 1974–1987 (2015).

    Google Scholar 

  4. Marcus, Y. Ions in Solution and their Solvation 107–155 (Wiley, 2015).

  5. Luecke, H. & Quiocho, F. A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347, 402–406 (1990).

    CAS  ADS  PubMed  Google Scholar 

  6. Pflugrath, J. W. & Quiocho, F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257–260 (1985).

    CAS  ADS  PubMed  Google Scholar 

  7. Jentsch, T. J. & Pusch, M. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol. Rev. 98, 1493–1590 (2018).

    CAS  PubMed  Google Scholar 

  8. Foyle, E., Mason, T., Coote, M., Izgorodina, E. & White, N. Robust organic cages prepared using hydrazone condensation display sulfate/hydrogenphosphate selectivity in water. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2021-qqhs8 (2021).

  9. Zhou, H. et al. Highly selective fluorescent recognition of sulfate in water by two rigid tetrakisimidazolium macrocycles with peripheral chains. J. Am. Chem. Soc. 135, 14908–14911 (2013).

    CAS  PubMed  Google Scholar 

  10. Custelcean, R., Bosano, J., Bonnesen, P. V., Kertesz, V. & Hay, B. P. Computer-aided design of a sulfate-encapsulating receptor. Angew. Chem. Int. Ed. 48, 4025–4029 (2009).

  11. Fiala, T., Sleziakova, K., Marsalek, K., Salvadori, K. & Sindelar, V. Thermodynamics of halide binding to a neutral bambusuril in water and organic solvents. J. Org. Chem. 83, 1903–1912 (2018).

    CAS  PubMed  Google Scholar 

  12. Lisbjerg, M., Nielsen, B. E., Milhoj, B. O., Sauer, S. P. A. & Pittelkow, M. Anion binding by biotin[6]uril in water. Org. Biomol. Chem. 13, 369–373 (2015).

    CAS  PubMed  Google Scholar 

  13. Borissov, A. et al. Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors. J. Am. Chem. Soc. 141, 4119–4129 (2019).

    CAS  PubMed  Google Scholar 

  14. Sommer, F., Marcus, Y. & Kubik, S. Effects of solvent properties on the anion binding of neutral water-soluble bis(cyclopeptides) in water and aqueous solvent mixtures. ACS Omega 2, 3669–3680 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kubik, S. Anion recognition in aqueous media by cyclopeptides and other synthetic receptors. Acc. Chem. Res. 50, 2870–2878 (2017).

    CAS  PubMed  Google Scholar 

  16. Qin, L., Hartley, A., Turner, P., Elmes, R. B. P. & Jolliffe, K. A. Macrocyclic squaramides: anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chem. Sci. 7, 4563–4572 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin, L. et al. Receptors for sulfate that function across a wide pH range in mixed aqueous–DMSO media. Chem. Commun. 55, 12312–12315 (2019).

    CAS  Google Scholar 

  18. Xie, H. et al. A hexapodal capsule for the recognition of anions. J. Am. Chem. Soc. 143, 3874–3880 (2021).

    CAS  PubMed  Google Scholar 

  19. Liu, Y., Zhao, W., Chen, C.-H. & Flood, A. H. Chloride capture using a C–H hydrogen-bonding cage. Science 365, 159–161 (2019).

    CAS  ADS  PubMed  Google Scholar 

  20. Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem. 11, 52–56 (2018).

    ADS  PubMed  Google Scholar 

  21. Kim, S. K. et al. Bipyrrole-strapped calix[4]pyrroles: strong anion receptors that extract the sulfate anion. J. Am. Chem. Soc. 136, 15079–15085 (2014).

    CAS  PubMed  Google Scholar 

  22. Kang, S. O., Llinares, J. M., Day, V. W. & Bowman-James, K. Cryptand-like anion receptors. Chem. Soc. Rev. 39, 3980–4003 (2010).

    CAS  PubMed  Google Scholar 

  23. Dietrich, B., Lehn, J. M. & Sauvage, J. P. Les cryptates. Tetrahedron Lett. 10, 2889–2892 (1969).

    Google Scholar 

  24. Park, C. H. & Simmons, H. E. Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc. 90, 2431–2432 (1968).

    CAS  Google Scholar 

  25. Lehn, J. M., Sonveaux, E. & Willard, A. K. Molecular recognition. Anion cryptates of a macrobicyclic receptor molecule for linear triatomic species. J. Am. Chem. Soc. 100, 4914–4916 (1978).

    CAS  Google Scholar 

  26. Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).

    PubMed  PubMed Central  Google Scholar 

  27. Li, H. et al. Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nat. Chem. 7, 1003–1008 (2015).

    CAS  ADS  PubMed  Google Scholar 

  28. Mastalerz, M. et al. Transformation of a [4+6] salicylbisimine cage to chemically robust amide cages. Angew. Chem. Int. Ed. 58, 8819–8823 (2019).

    Google Scholar 

  29. Hollstein, S. et al. Dynamic covalent self-assembly of chloride- and ion-pair-templated cryptates. Angew. Chem. Int. Ed. 61, e202201831 (2022).

    CAS  Google Scholar 

  30. Busschaert, N. et al. Tripodal transmembrane transporters for bicarbonate. Chem. Commun. 46, 6252–6254 (2010).

    CAS  Google Scholar 

  31. Valkenier, H., Dias, C. M., Butts, C. P. & Davis, A. P. A folding decalin tetra-urea for transmembrane anion transport. Tetrahedron 73, 4955–4962 (2017).

    CAS  Google Scholar 

  32. Bryantsev, V. S. & Hay, B. P. De novo structure-based design of bisurea hosts for tetrahedral oxoanion guests. J. Am. Chem. Soc. 128, 2035–2042 (2006).

    CAS  PubMed  Google Scholar 

  33. Jia, C. et al. Highly efficient extraction of sulfate ions with a tripodal hexaurea receptor. Angew. Chem. Int. Ed. 50, 486–490 (2011).

    CAS  Google Scholar 

  34. Custelcean, R., Moyer, B. A. & Hay, B. P. A coordinatively saturated sulfate encapsulated in a metal–organic framework functionalized with urea hydrogen-bonding groups. Chem. Commun. 2005, 5971–5973 (2005).

  35. Wu, X., Wang, P., Lewis, W., Jiang, Y.-B. & Gale, P. A. Measuring anion binding at biomembrane interfaces. Nat. Commun. 13, 4623 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  36. Shinde, S. et al. Urea-based imprinted polymer hosts with switchable anion preference. J. Am. Chem. Soc. 142, 11404–11416 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hua, Y., Liu, Y., Chen, C.-H. & Flood, A. H. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions. J. Am. Chem. Soc. 135, 14401–14412 (2013).

    CAS  PubMed  Google Scholar 

  38. Brooks, S. J., Gale, P. A. & Light, M. E. Carboxylate complexation by 1,1′-(1,2-phenylene)bis(3-phenylurea) in solution and the solid state. Chem. Commun. 2005, 4696–4698 (2005).

  39. Eiberweiser, A., Nazet, A., Hefter, G. & Buchner, R. Ion hydration and association in aqueous potassium phosphate solutions. J. Phy. Chem. B 119, 5270–5281 (2015).

    CAS  Google Scholar 

  40. Chen, S.-Q., Zhao, W. & Wu, B. Separation of sulfate anion from aqueous solution governed by recognition chemistry: a minireview. Front. Chem. 10, 905563 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  41. Moyer, B. A. et al. A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. Inorg. Chem. 52, 3473–3490 (2013).

    CAS  PubMed  Google Scholar 

  42. McKeown, D. A., Muller, I. S. & Pegg, I. L. Iodine valence and local environments in borosilicate waste glasses using X-ray absorption spectroscopy. J. Nucl. Mater. 456, 182–191 (2015).

    CAS  ADS  Google Scholar 

  43. Pegg, I. L. Behavior of technetium in nuclear waste vitrification processes. J. Radioanal. Nucl. Chem. 305, 287–292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Keymeulen, F. et al. Fluoride binding in water with the use of micellar nanodevices based on salophen complexes. Org. Biomol. Chem. 13, 2437–2443 (2015).

    CAS  PubMed  Google Scholar 

  45. Tatulian, S. A. Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes. Biochim. Biophys. Acta 736, 189–195 (1983).

    CAS  PubMed  Google Scholar 

  46. Hlawacek, G., Ahmad, I., Smithers, M. A. & Kooij, E. S. To see or not to see: imaging surfactant coated nano-particles using HIM and SEM. Ultramicroscopy 135, 89–94 (2013).

    CAS  PubMed  Google Scholar 

  47. Gou, F. et al. One-pot cyclization to large peptidomimetic macrocycles by in situ-generated β-turn-enforced folding. J. Am. Chem. Soc. 145, 9530–9539 (2023).

    CAS  PubMed  Google Scholar 

  48. Tzioumis, N., Cullen, D., Jolliffe, K. & White, N. G. Selective removal of sulfate from water by precipitation with a rigid bis-amidinium compound. Angew. Chem. Int. Ed. 62, e202218360 (2023).

  49. Chang, K.-J., Moon, D., Lah, M. S. & Jeong, K.-S. Indole-based macrocycles as a class of receptors for anions. Angew. Chem. Int. Ed. 44, 7926–7929 (2005).

    CAS  Google Scholar 

  50. Havel, V., Yawer, M. A. & Sindelar, V. Real-time analysis of multiple anion mixtures in aqueous media using a single receptor. Chem. Commun. 51, 4666–4669 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Australian Research Council (DE220101000, X.W. and LE170100144, J.K.C.), the National Natural Science Foundation of China (21820102006 and 92356308, X.W.), the University of Queensland and Xiamen University. Part of this research was undertaken at the MX1 beamline at the Australian Synchrotron, part of ANSTO. We thank the Australian Synchrotron for travel support, and their staff for assistance. The computational work was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government, and resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. E.D. thanks M. Stroet (the University of Queensland) for assistance with the Automated Topology Builder. We thank P. A. Gale (University of Technology Sydney) and N. Busschaert (Tulane University) for providing compound 2 for NMR studies. We thank X.-S. Yan (Xiamen University) for providing reagents and laboratory space during manuscript revision. We thank M. Carpinelli de Jesus (the University of Queensland) for help in ion chromatography experiments. We thank J.-J. Chen (the Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University) for performing data analysis on the isothermal calorimetry.

Author information

Authors and Affiliations

Authors

Contributions

X.W. conceived and directed the project. L.J. and X.W. performed the experiments. E.D. designed and performed the computational studies. J.K.C. supervised the crystallographic studies and advised on the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Evelyne Deplazes or Xin Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kristin Bowman-James and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–54, Supplementary Tables 1–11, Supplementary Methods and Supplementary Discussion.

Supplementary Data 1

Crystallographic information file for 1; CCDC reference 2220230.

Supplementary Data 2

Crystallographic information file for 1–TBA2SO4; CCDC reference 2223225.

Supplementary Data 3

Crystallographic information file for 4–TBA2SO4; CCDC reference 2220513.

Source data

Source Data Fig. 3

Numerical data for Fig. 3.

Source Data Fig. 4

Numerical data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Deplazes, E., Clegg, J.K. et al. A charge-neutral organic cage selectively binds strongly hydrated sulfate anions in water. Nat. Chem. 16, 335–342 (2024). https://doi.org/10.1038/s41557-024-01457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01457-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing