Skip to main content
Log in

Comparative investigation of R1270, R290, and R600a boiling in microfin and smooth tubes

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study investigates the comparative analysis performance of three environmentally friendly refrigerants, R1270, R290, and R600a, in the context of flow boiling heat transfer (FBHT) and pressure gradients. The experiments employ copper microfin and smooth tubes, operating under varying conditions, including saturation temperatures (Tsat) of 6 and 15 °C, heat fluxes (HF) ranging from 13 to 30 kW.m−2, mass fluxes (MF) spanning 187 to 427 kg.m−2.s−1, and vapor quality from 0.1 to 1.0. Both tube types share identical dimensions - an outer diameter, inner diameter, and length of 7 mm, 6.14 mm, and 500 mm, respectively - facilitating a focused investigation into the impact of microfins on flow boiling characteristics. The results highlight noteworthy differences among the refrigerants, with the microfin tube exhibiting substantial enhancements in heat transfer coefficient (HTC), particularly pronounced with R1270 and R290. At the same time, the R600a demonstrates more HTC improvements than the smooth tube. Additionally, the microfin tube increases pressure gradients. The average enhancement factor (EF) for R600a, R290, and R1270 are 2.15, 1.95, and 1.9, respectively, while the average penalty factor (PF) for R600a, R290, and R1270 are 1.25, 1.3, and 1.35, respectively. Comparative analyses with established literature correlations validate the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Experimental data and further information can be sent on request by the corresponding author.

Abbreviations

FBHT:

Flow boiling heat transfer

HF:

Heat flux

HT:

Heat transfer

HTC:

Heat transfer coefficient

MF:

Mass flux

cp:

Specific heat at constant pressure J.kg1.℃1

d:

Diameter of inner tube m

D:

The diameter of the outer tube m

dp/dL:

Pressure gradient Pa/m

G:

Mass flux kg.m2.s1

g:

Gravitational acceleration m.s2

h:

Heat transfer coefficient W.m2.℃1

k:

Thermal conductivity W.m1.℃1

L:

Length m

\(\dot{m}\) :

Mass flow rate kg.s1

n:

Number of fins

P:

Pressure Pa

q:

Heat flux W.m2

Q:

Heat transfer W

T:

Temperature ℃

\(\dot{V}\) :

Volume flow rate m3.s1

x:

Vapor quality

\(\mathrm{\varnothing }\) :

The generated heat per unit volume W.m3

\(\varepsilon\) :

Void fraction

\(\xi\) :

Specific enthalpy J.kg1

\(\rho\) :

Density kg.m3

\(\tau\) :

Latent heat of vaporization J.kg1

\(\omega\) :

Surface tension N.m1

a:

Acceleration

exp:

Experimental

f:

Friction

g:

Gravitational

w:

Heating water

w, i:

Inlet heating water

w, o:

Outlet heating water

i:

The inner diameter

in:

Inlet

l:

Liquid

m:

Mean vapor quality

o:

The outer diameter

pre:

Pre-heater

ref.:

Refrigerant

sat.:

Saturated

t:

Test section

T:

Total

v:

Vapor

w, i:

Inlet hot water

w, o:

Outlet hot water

wall, i:

Inner wall

wall, o:

Outer wall

References

  1. Fenouche R, Ouadha A (2023) Flow and heat transfer features during propane (R290) and isobutane (R600a) boiling in a tube. Int J Thermofluids 20:100428. https://doi.org/10.1016/j.ijft.2023.100428

    Article  Google Scholar 

  2. Wu J, Wang L, Li B, Dai Y (2022) Flow boiling heat transfer performances of R1234ze(E)/R152a in a horizontal micro-fin tube. Exp Heat Transf 35(4):381–398. https://doi.org/10.1080/08916152.2021.1873876

    Article  Google Scholar 

  3. Allymehr E, Pardiñas ÁÁ, Eikevik TM, Hafner A (2021) Comparative analysis of evaporation of isobutane (R600a) and propylene (R1270) in compact smooth and microfinned tubes. Appl Therm Eng 188:116606. https://doi.org/10.1016/j.applthermaleng.2021.116606

    Article  Google Scholar 

  4. Longo GA, Mancin S, Righetti G, Zilio C (2020) Flow boiling heat transfer capabilities of R134a low GWP substitutes inside a 4 mm id horizontal smooth tube: R600a and R152a. Heat Mass Transf. https://doi.org/10.1007/s00231-020-02991-x

    Article  Google Scholar 

  5. Allymehr E, Pardiñas ÁÁ, Eikevik TM, Hafner A (2020) Characteristics of evaporation of propane (R290) in compact smooth and microfinned tubes. Appl Therm Eng 181:115880. https://doi.org/10.1016/j.applthermaleng.2020.115880

    Article  Google Scholar 

  6. Qiu J, Zhang H (2020) Experimental investigation on two-phase frictional pressure drop of R600a and R600a/3GS oil mixture in a smooth horizontal tube. Int J Refrig 117:307–315. https://doi.org/10.1016/j.ijrefrig.2020.04.025

    Article  Google Scholar 

  7. Righetti G, Longo GA, Zilio C, Mancin S (2019) Flow boiling of environmentally friendly refrigerants inside a compact enhanced tube. Int J Refrig 104:344–355. https://doi.org/10.1016/j.ijrefrig.2019.05.036

    Article  Google Scholar 

  8. Yang Z-Q, Chen G-F, Yao Y, Song Q-L, Shen J, Gong M-Q (2018) Experimental study on flow boiling heat transfer and pressure drop in a horizontal tube for R1234ze(E) versus R600a. Int J Refrig 85:334–352. https://doi.org/10.1016/j.ijrefrig.2017.10.011

    Article  Google Scholar 

  9. Lillo G, Mastrullo R, Mauro AW, Viscito L (2018) Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane (R290): Experiments and assessment of predictive methods. Int J Heat Mass Transfer 126:1236–1252. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.069

    Article  Google Scholar 

  10. Jiang GB, Tan JT, Nian QX, Tang SC, Tao WQ (2016) Experimental study of boiling heat transfer in smooth/micro-fin tubes of four refrigerants. Int J Heat Mass Transf 98:631–642. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.024

    Article  Google Scholar 

  11. Nasr M, Akhavan-Behabadi MA, Momenifar MR, Hanafizadeh P (2015) Heat transfer characteristic of R-600a during flow boiling inside horizontal plain tube. Int Commun Heat Mass Transfer 66:93–99. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.024

    Article  Google Scholar 

  12. Kedzierski MA, Park K-J (2013) Horizontal convective boiling of, R134A, R1234YF/R134A, and R1234ZE (E) within a micro-fin tube. J Enhanc Heat Transf 20(4):333–346. https://doi.org/10.1615/JEnhHeatTransf.2014010579

    Article  Google Scholar 

  13. Copetti JB, Macagnan MH, Zinani F (2013) Experimental study on R-600a boiling in 2.6 mm tube. Int J Refrig 36(2):325–334. https://doi.org/10.1016/j.ijrefrig.2012.09.007

    Article  Google Scholar 

  14. Padovan A, Col DD, Rossetto L (2011) Experimental study on flow boiling of R134a and R410A in a horizontal microfin tube at high saturation temperatures. Appl Therm Eng 31(17–18):3814–3826. https://doi.org/10.1016/j.applthermaleng.2011.07.026

    Article  Google Scholar 

  15. Choi K-I, Pamitran AS, Oh C-Y, Oh J-T (2007) Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels. Int J Refrig 30(8):1336–1346. https://doi.org/10.1016/j.ijrefrig.2007.04.007

    Article  Google Scholar 

  16. Kim M-H, Shin J-S (2005) Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes. Int J Refrig 28(6):940–948. https://doi.org/10.1016/j.ijrefrig.2005.01.016

    Article  Google Scholar 

  17. Lee HS, Yoon JI, Kim JD, Bansal P (2005) Evaporating heat transfer and pressure drop of hydrocarbon refrigerants in 9.52 and 12.70 mm smooth tube. Int J Heat Mass Transf 48(12):2351–2359. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.012

    Article  Google Scholar 

  18. Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf. 13(2):383–393. https://doi.org/10.1016/0017-9310(70)90114-6

    Article  Google Scholar 

  19. Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29(3):351–358

    Article  Google Scholar 

  20. Yu J, Momoki S, Koyama S (1999) Experimental study of surface effect on flow boiling heat transfer in horizontal smooth tubes. Int J Heat Mass Transf 42(10):1909–1918

    Article  Google Scholar 

  21. Cavallini A, Del Col D, Matkovic M, Rossetto L (2009) Frictional pressure drop during vapour–liquid flow in minichannels: Modelling and experimental evaluation. Int J Heat Fluid Flow 30(1):131–139

    Article  Google Scholar 

  22. Müller-Steinhagen H, Heck K (1986) A simple friction pressure drop correlation for two-phase flow in pipes. Chem Eng Process 20(6):297–308. https://doi.org/10.1016/0255-2701(86)80008-3

    Article  Google Scholar 

  23. Rollmann P, Spindler K (2016) New models for heat transfer and pressure drop during flow boiling of R407C and R410A in a horizontal microfin tube. Int J Therm Sci 103:57–66

    Article  Google Scholar 

  24. Wu Z, Sundén B, Wadekar VV, Li W (2015) Heat transfer correlations for single-phase flow, condensation, and boiling in microfin tubes. Heat Transfer Eng 36(6):582–595

    Article  Google Scholar 

  25. Diani A, Mancin S, Rossetto L (2014) R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube. Int J Refrig 47:105–119. https://doi.org/10.1016/j.ijrefrig.2014.07.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zahraa Kareem Yasser formulated the main research idea. The research design and planning were collaborative efforts and discussions involving Mahmood Hasan Oudah and Zahraa Kareem Yasser. Mahmood Hasan Oudah designed the experimental apparatus and conducted data collection. Zahraa Kareem Yasser performed data analysis and created the charts. Mahmood Hasan Oudah wrote the research manuscript. Mahmood Hasan Oudah compiled and formatted the references used in the research. The research was self-funded, and this study had no external financial support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmood Hasan Oudah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oudah, M.H., Yasser, Z.K. Comparative investigation of R1270, R290, and R600a boiling in microfin and smooth tubes. Heat Mass Transfer 60, 599–616 (2024). https://doi.org/10.1007/s00231-024-03457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-024-03457-0

Navigation