Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 6, 2024

210Pb dating and neutron activation analysis of the Sundarban mangrove sediments: sedimentation rate and metal contamination history

  • Mohammad Amirul Islam ORCID logo EMAIL logo , Shaiful Kabir ORCID logo , Ali Arman Lubis , Untung Sugiharto , M. Moinul Islam and Mohammad Belal Hossen
From the journal Radiochimica Acta

Abstract

In this study, alpha spectrometry and neutron activation analysis were applied to assess the mass accumulation rate, contamination history, and ecological risk of the Sundarban mangrove sediments. The mass accumulation rates of sediments using 210Pb dating determined for the first time in this area ranged from 0.068 to 3.20 kg m−2 y−1, with an average of 0.61 kg m−2 y−1. The contamination history of 11 metal(loid)s (Al, Ca, V, Cr, Fe, Ni, Cu, Zn, As, Hg, and Pb) was assessed. Different environmental contamination indices suggested that Sundarban mangrove sediments were contaminated by As. Considering different sediment quality guidelines, it was observed that Cr, Ni, and As posed occasional adverse biological effects on marine organisms. Multivariate statistical approaches were applied to elucidate the origin and transport behavior of the studied metal(loid)s in the mangrove ecosystem which suggested that sources of metal(loid) pollution were both anthropogenic and geogenic. The results from this study should improve the knowledge of metal contamination and ecological risk to biota to develop new strategies and enlarge management practices to save sensitive mangrove ecosystems.


Corresponding author: Mohammad Amirul Islam, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Ashulia, Dhaka 1349, Bangladesh, E-mail:

Acknowledgment

The Bangladesh Atomic Energy Commission (BAEC) is acknowledged by the authors for support of field sampling and sample analysis. The authors also acknowledge the “FNCA: Climate Change Science Research using Nuclear and Isotopic Techniques” project for some logistic support for the research. Editor-in-Chief of Radiochimica Acta and other anonymous reviewers are gratefully acknowledged for their corrections and constructive comments.

  1. Research ethics: Not applicable.

  2. Author contributions: M. A. I.: Conceptualization, Project administration, Field sampling, Supervision, Methodology, Validation, Review and editing. S. K.: Field sampling, Sample preparation, Software, Data curation, Instrumental analysis, Preparation of the initial draft. A. A. and U. S.: Sample preparation and alpha spectrometry analysis. M. M. I.: Review and editing. M. B. H.: Supervision, Review, and editing.

  3. Competing interests: Authors declare that there is no known conflict of interest for this study.

  4. Research funding: No fund received.

  5. Data availability: Raw data will be available from the corresponding author upon request.

References

1. Simsek, F. B., Cagatay, M. N. Geochronology of Lake Sediments Using 210Pb with Double Energetic Window Method by LSC: An Application to Lake Van. Appl. Radiat. Isot. 2014, 93, 126–133; https://doi.org/10.1016/j.apradiso.2014.01.028.Search in Google Scholar PubMed

2. Andrade, R. L. B., Hatje, V., Masqué, P., Zurbrick, C. M., Boyle, E. A., Santos, W. P. C. Chronology of Anthropogenic Impacts Reconstructed from Sediment Records of Trace Metals and Pb Isotopes in Todos os Santos Bay (NE Brazil). Mar. Pollut. Bull. 2017, 125 (1–2), 459–471; https://doi.org/10.1016/j.marpolbul.2017.07.053.Search in Google Scholar PubMed

3. Islam, M. A., Das, B., Quraishi, S. B., Khan, R., Naher, K., Hossain, S. M., Karmaker, S., Latif, S. A., Hossen, M. B. Heavy Metal Contamination and Ecological Risk Assessment in Water and Sediments of the Halda River, Bangladesh: A Natural Fish Breeding Ground. Mar. Pollut. Bull. 2020, 160, 111649; https://doi.org/10.1016/j.marpolbul.2020.111649.Search in Google Scholar PubMed

4. Fontana, L., Ferreira, P. A., Benassi, R. F., Baldovi, A. A., Figueira, R. C. L., Tambosi, L. R., Calaboni, A., Tavares, D. A., Huang, X., Benassi, S. F., De-Souza, J. E., De-Jesus, T. A. Sedimentation Rate Inferred from 210Pb and 137Cs Dating of Three Sediment Cores at Itaipu Reservoir (Paraná State, Brazil) the World’s Second Largest Hydroelectricity Producer. J. Radioanal. Nucl. Chem. 2022, 331, 3571–3589; https://doi.org/10.1007/s10967-022-08380-4.Search in Google Scholar

5. Karbassi, A. R., Amirnezhad, R. Geochemistry of Heavy Metals and Sedimentation Rate in a Bay Adjacent to the Caspian Sea. Int. J. Environ. Sci. Technol. 2004, 1 (3), 191–198; https://doi.org/10.1007/bf03325832.Search in Google Scholar

6. Leng, M. J., Marshall, J. D. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quat. Sci. Rev. 2004, 23 (7–8), 811–831; https://doi.org/10.1016/j.quascirev.2003.06.012.Search in Google Scholar

7. Sert, I., Eftelioglu, M., Ozel, F. E. Historical Evolution of Heavy Metal Pollution and Recent Records in Lake Karagöl Sediment Cores Using 210Pb Models, Western Turkey. J. Radioanal. Nucl. Chem. 2017, 314 (3), 2155–2169; https://doi.org/10.1007/s10967-017-5627-x.Search in Google Scholar

8. Mariet, A.-L., Bégeot, C., Gimbert, F., Gauthier, J., Fluck, P., Walter-Simonnet, A.-V. Past Mining Activities in the Vosges Mountains (Eastern France): Impact on Vegetation and Metal Contamination over the Past Millennium. Holocene 2016, 26 (8), 1225–1236; https://doi.org/10.1177/0959683616638419.Search in Google Scholar

9. ELTurk, M., Abdullah, R., Zakaria, R. M., Bakar, N. K. A. Heavy Metal Contamination in Mangrove Sediments in Klang Estuary, Malaysia: Implication of Risk Assessment. Estuar. Coast Shelf Sci. 2019, 226, 106266; https://doi.org/10.1016/j.ecss.2019.106266.Search in Google Scholar

10. Chai, M., Li, R., Qiu, Z., Niu, Z., Shen, X. Mercury Distribution and Transfer in Sediment-Mangrove System in Urban Mangroves of Fast-Developing Coastal Region, Southern China. Estuar. Coast Shelf Sci. 2020, 240, 106770; https://doi.org/10.1016/j.ecss.2020.106770.Search in Google Scholar

11. Iordache, A. M., Nechita, C., Zgavarogea, R., Voica, C., Varlam, M., Ionete, R. E. Accumulation and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments of the Olt River, Romania. Sci. Rep. 2022, 12, 880; https://doi.org/10.1038/s41598-022-04865-0.Search in Google Scholar PubMed PubMed Central

12. Frignani, M., Bellucci, L. G., Favotto, M., Albertazzi, S. Pollution Historical Trends as Recorded by Sediments at Selected Sites of the Venice Lagoon. Environ. Int. 2005, 31 (7), 1011–1022; https://doi.org/10.1016/j.envint.2005.05.011.Search in Google Scholar PubMed

13. Islam, M. R., Islam, M. A., Hossain, M. D., Sultana, J., Islam, M. T., Nahid, F. The Contamination Appraisal and Depth-Wise Scrutiny of Trace Elements in Sediments of the Moyur River, Bangladesh. Ecol. Indicat. 2023, 154, 110890; https://doi.org/10.1016/j.ecolind.2023.110890.Search in Google Scholar

14. Maghrebi, M., Karbassi, A., Lak, R., Noori, R., Sadrinasab, M. Temporal Metal Concentration in Coastal Sediment at the North Region of Persian Gulf. Mar. Pollut. Bull. 2018, 135, 880–888; https://doi.org/10.1016/j.marpolbul.2018.08.017.Search in Google Scholar PubMed

15. Figols, A. P., Bonotto, D. M. Applicability of the 210Pb Dating Method to Quartz-Sandstone Stalactites. J. Radioanal. Nucl. Chem. 2022, 331, 89–98; https://doi.org/10.1007/s10967-021-08086-z.Search in Google Scholar

16. Robbins, J. A., Edgington, D. N. Determination of Recent Sedimentation Rates in Lake Michigan Using Pb-210 and Cs-137. Geochim. Cosmochim. Acta 1975, 39, 285–304; https://doi.org/10.1016/0016-7037(75)90198-2.Search in Google Scholar

17. Lubis, A. A. Constant Rate of Supply Model for Determining Sediment Accumulation Rates in the Coastal Area Using 210Pb. J. Coast. Dev. 2006, 10 (1), 9–18.Search in Google Scholar

18. Baskaran, M. Po-210 and Pb-210 as Atmospheric Tracers and Global Atmospheric Pb-210 Fallout: A Review. J. Environ. Radioact. 2011, 102, 500–513; https://doi.org/10.1016/j.jenvrad.2010.10.007.Search in Google Scholar PubMed

19. Ontiveros-Cuadras, J. F., Ruiz-Fernández, A. C., Sanchez-Cabeza, J. A., Pérez-Bernal, L. H., Sericano, J. L., Preda, M., Kwong, L. L. W., Páez-Osuna, F. Trace Metal Fluxes and Natural Potential Risks from 210Pb-Dated Sediment Cores in Lacustrine Environments at the Central Mexican Plateau. Sci. Total Environ. 2014, 468, 677–687; https://doi.org/10.1016/j.scitotenv.2013.08.071.Search in Google Scholar PubMed

20. Appleby, P. G., Oldfield, F. The Calculation of Lead-210 Dates Assuming a Constant Rate of Supply of Unsupported 210Pb to the Sediment. Catena 1978, 5 (1), 1–8; https://doi.org/10.1016/s0341-8162(78)80002-2.Search in Google Scholar

21. Crickmore, M. J., Tazioli, G. S., Appleby, P. G., Oldfield, F. The Use of Nuclear Techniques in Sediment Transport and Sedimentation Problems. In International Hydrological Programme, UNESCO, Paris, 1990; pp. 131–147.Search in Google Scholar

22. Ray, R., Rixen, T., Baum, A., Malik, A., Gleixner, G., Jana, T. K.. Distribution, Sources and Biogeochemistry of Organic Matter in a Mangrove-Dominated Estuarine System (Indian Sundarban) During the Pre-monsoon. Estuar. Coast Shelf Sci. 2015, 167, 404–413; https://doi.org/10.1016/j.ecss.2015.10.017.Search in Google Scholar

23. Goodbred, S. L.Jr., Kuehl, S. A., Steckler, M. S., Sarker, M. H. Controls on Facies Distribution and Stratigraphic Preservation in the Ganges-Brahmaputra Delta Sequence. Sediment. Geol. 2003, 155, 301–316; https://doi.org/10.1016/s0037-0738(02)00184-7.Search in Google Scholar

24. Trifuoggi, M., Ferrara, L., Toscanesi, M., Mondal, P., Ponniah, J. M., Sarkar, S. K., Arienzo, M. Spatial Distribution of Trace Metals in Surface Sediments of Hooghly (Ganges) River Estuary in West Bengal, India. Environ. Sci. Pollut. Res. 2022, 29, 6929–6942; https://doi.org/10.1007/s11356-021-15918-8.Search in Google Scholar PubMed PubMed Central

25. Daoust, R. J., Moore, T. R., Chmura, G. L., Magenheimer, J. F. Chemical Evidence and Anthropogenic Influences in a Bay of Fundy Salt-Marsh. J. Coast. Res. 1996, 12, 520–532.Search in Google Scholar

26. Moushmi, K. S., Cheriyan, A. S., Cheriyan, E., Mohan, M., Chandramohanakumar, N. Trace Metal Distribution and Ecological Risk Assessment in the Core Sediments of a Highly Urbanized Tropical Mangrove Ecosystem, Southwest Coast of India. Mar. Pollut. Bull. 2022, 175, 113163; https://doi.org/10.1016/j.marpolbul.2021.113163.Search in Google Scholar PubMed

27. Sarkar, S. Rapid Industrialization Poses Pollution Risk to the Sundarban, Nature; The Third Pole: London, UK, 2018.Search in Google Scholar

28. Kumar, A., Ramanathan, A. L., Prasad, M. B. K., Datta, D., Kumar, M., Sappal, S. M. Distribution, Enrichment, and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh: A Baseline Study Before Sundarban Oil Spill of December 2014. Environ. Sci. Pollut. Res. 2016, 23, 8985–8999; https://doi.org/10.1007/s11356-016-6086-6.Search in Google Scholar PubMed

29. Islam, M. A., Al-Mamun, A., Hossain, F., Quraishi, S. B., Naher, K., Khan, R., Das, S., Tamim, U., Hossain, S. M., Nahid, F. Contamination and Ecological Risk Assessment of Trace Metals in Sediments of the Rivers of the Sundarban Mangrove Forest, Bangladesh. Mar. Pollut. Bull. 2017, 124 (1), 356–366; https://doi.org/10.1016/j.marpolbul.2017.07.059.Search in Google Scholar PubMed

30. Carroll, J., Williamson, M., Lerche, I., Karabanov, E., Williams, D. F. Geochronology of lake Baikal from 210Pb and 137Cs Radioisotopes. Appl. Radiat. Isot. 1999, 50, 1105–1119; https://doi.org/10.1016/s0969-8043(98)00116-x.Search in Google Scholar

31. Sanchez-Cabeza, J., Ruiz-Fernández, A. 210Pb Sediment Radiochronology: An Integrated Formulation and Classification of Dating Models. Geochim. Cosmochim. Acta 2012, 82, 183–200; https://doi.org/10.1016/j.gca.2010.12.024.Search in Google Scholar

32. Sasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., Borchard, N. Organic Carbon Burial and Sources in Soils of Coastal Mudflat and Mangrove Ecosystems. Catena 2020, 187, 104414; https://doi.org/10.1016/j.catena.2019.104414.Search in Google Scholar

33. United States Environmental Protection Agency (USEPA), 3051A. Microwave Assisted Acid Dissolution of Sediments, Sludges, Soils, and Oils, Revision 1; United States Environmental Protection Agency: Washington, DC, 2007.Search in Google Scholar

34. Muller, G. Schwermetalle in den Sedimenten des Rheins-Veranderungen seit 1971. Umschau 1979, 79, 133–149.Search in Google Scholar

35. Abrahim, G. M. S., Parker, R. J. Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238; https://doi.org/10.1007/s10661-007-9678-2.Search in Google Scholar PubMed

36. Davoodi, H., Gharibreza, M., Negarestan, H., Mortazavi, M. S., Lak, R. Ecological Risk Assessment of the Assaluyeh and Bassatin Estuaries (Northern Persian Gulf) Using Sediment Quality Indices. Estuar. Coast Shelf Sci. 2017, 192, 17–28; https://doi.org/10.1016/j.ecss.2017.05.003.Search in Google Scholar

37. Rudnick, R. L., Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry (Chapter 4), 2nd ed.; Elsevier, 2014; pp. 1–64.10.1016/B0-08-043751-6/03016-4Search in Google Scholar

38. Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001; https://doi.org/10.1016/0043-1354(80)90143-8.Search in Google Scholar

39. MacDonald, D. D., Ingersoll, C. G., Berger, T. A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31; https://doi.org/10.1007/s002440010075.Search in Google Scholar PubMed

40. Long, E. R., MacDonald, D. D., Smith, S. L., Calder, F. D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97; https://doi.org/10.1007/bf02472006.Search in Google Scholar

41. Long, E. R., MacDonald, D. D., Severn, C. G., Hong, B. C. Classifying Probabilities of Acute Toxicity in Marine Sediments with Empirically Derived Sediment Quality Guidelines. Environ. Toxicol. Chem. 2000, 19, 2598–2601; https://doi.org/10.1002/etc.5620191028.Search in Google Scholar

42. Tamim, U., Khan, R., Jolly, Y. N., Fatema, K., Das, S., Naher, K., Islam, M. A., Islam, S. M. A., Hossain, S. M. Elemental Distribution of Metals in Urban River Sediments Near an Industrial Effluent Source. Chemosphere 2016, 155, 509–518; https://doi.org/10.1016/j.chemosphere.2016.04.099.Search in Google Scholar PubMed

43. Sanchez-Cabeza, J. A., Masque, P., Ani-Ragolta, I., Merino, J., Frignani, M., Alvisi, F., Palanques, A., Puig, P. Sediment Accumulation Rates in the Southern Barcelona Continental Margin (NW Mediteranean Sea) Derived from 210Pb and 137Cs Chronology. Prog. Oceanogr. 1999, 44, 313–332; https://doi.org/10.1016/s0079-6611(99)00031-2.Search in Google Scholar

44. Hancock, G. J., Hunter, J. R. Use of Excess 210Pb and 228Th to Estimate Rates of Sediment Accumulation and Bioturbation in Port Philip Bay, Australia. Mar. Freshw. Res. 1999, 50, 533–545; https://doi.org/10.1071/mf98053.Search in Google Scholar

45. Banerjee, K., Senthilkumar, B., Purvaja, R., Ramesh, R. Sedimentation and Trace Metal Distribution in Selected Locations of Sundarban Mangroves and Hooghly Estuary, Northeast Coast of India. Environ. Geochem. Health 2012, 34 (1), 27–42; https://doi.org/10.1007/s10653-011-9388-0.Search in Google Scholar PubMed

46. Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., Klumpp, D. W. Rapid Sediment Accumulation and Microbial Mineralization in Forests of the Mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuar. Coast Shelf Sci. 2005, 63 (4), 605–618; https://doi.org/10.1016/j.ecss.2005.01.004.Search in Google Scholar

47. Turekian, K. K., Wedepohl, K. H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Am. Bull. 1961, 72, 175–192; https://doi.org/10.1130/0016-7606(1961)72[175:doteis]2.0.co;2.Search in Google Scholar

48. United States Environmental Protection Agency (USEPA) Screening-Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Appendix E Toxicity Ref Values 3; US-EPA: Washington, D.C., 1999.Search in Google Scholar

49. United Nations Environment Programme (UNEP), GESAMP. Cadmium, Lead and Tin in Marine Environment; United Nations Environment Programme: Regional Seas Reports and Studies No. 56 (90); UN: New York, USA, 1985.Search in Google Scholar

50. Latif, S. A., Afroj, D., Hossain, S. M., Uddin, M. S., Islam, M. A., Begum, K., Oura, Y., Ebihara, M., Katada, M. Determination of Toxic Trace Elements in Foodstuffs, Soils and Sediments of Bangladesh Using Instrumental Neutron Activation Analysis. Bull. Environ. Contam. Toxicol. 2009, 82, 384–388; https://doi.org/10.1007/s00128-008-9621-4.Search in Google Scholar PubMed

51. Ali, M. R., Islam, M. A., Hossain, M. F., Hossain, S. M., Khan, R., Naher, K., Tamim, U., Nahid, F. Depth-Wise Elemental Contamination Trend in Sediment Cores of the Sundarban Mangrove Forest, Bangladesh. J. Radioanal. Nucl. Chem. 2021, 328 (3), 1349–1359; https://doi.org/10.1007/s10967-021-07739-3.Search in Google Scholar

52. Ahmed, K., Mehedi, Y., Haque, R., Mondol, P. Heavy Metal Concentrations in Some Macrobenthic Fauna of the Sundarbans Mangrove Forest, Southwest Coast of Bangladesh. Environ. Monit. Assess. 2011, 177, 505–514; https://doi.org/10.1007/s10661-010-1651-9.Search in Google Scholar PubMed

53. Chowdhury, R., Favas, P. J. C., Pratas, J., Jonathan, M. P., Ganesh, P. S., Sarkar, S. K. Accumulation of Trace Metals by Mangrove Plants in Indian Sundarban Wetland: Prospects for Phytoremediation. Int. J. Phytoremediation 2015, 17, 885–894; https://doi.org/10.1080/15226514.2014.981244.Search in Google Scholar PubMed

54. Bodin, N., N’Gom-Kâ, R., Kâ, S., Thiaw, O. T., Tito de Morais, L., Le-Loch, F., Rozuel-Chartier, E., Auger, D., Chiffoleau, J.-F. Assessment of Trace Metal Contamination in Mangrove Ecosystems from Senegal, West Africa. Chemosphere 2013, 90, 150–157; https://doi.org/10.1016/j.chemosphere.2012.06.019.Search in Google Scholar PubMed

55. Mackey, A. P., Hodgkinson, M. C. Concentrations and Spatial Distribution of Trace Metals in Mangrove Sediments from the Brisbane River, Australia. Environ. Pollut. 1995, 90, 181–186; https://doi.org/10.1016/0269-7491(94)00106-n.Search in Google Scholar PubMed

56. Harris, R. R., Santos, M. C. Trace Metal Contamination and Physiological Variability in the Brazilian Mangrove Crabs Ucides cordatus and Callinectes danae (Crustacea: Decapoda). Mar. Biol. 2000, 137, 691–703; https://doi.org/10.1007/s002270000382.Search in Google Scholar

57. Tam, N. F. Y., Wong, Y. S. Spatial Variation of Heavy Metals in Surface Sediments of Hong Kong Mangrove Swamps. Environ. Pollut. 2000, 110 (2), 195–205; https://doi.org/10.1016/s0269-7491(99)00310-3.Search in Google Scholar PubMed

58. Ranjan, P., Ramanathan, A. L., Kumar, A., Singhal, R. K., Datta, D., Venkatesh, M. Trace Metal Distribution, Assessment and Enrichment in the Surface Sediments of Sundarban Mangrove Ecosystem in India and Bangladesh. Mar. Pollut. Bull. 2018, 127, 541–547; https://doi.org/10.1016/j.marpolbul.2017.11.047.Search in Google Scholar PubMed

59. Antizar-Ladislao, B., Mondal, P., Mitra, S., Sarkar, S. K. Assessment of Trace Element Contamination Level and Toxicity in Sediments from Coastal Regions of West Bengal, Eastern Part of India. Mar. Pollut. Bull. 2015, 101, 886–894; https://doi.org/10.1016/j.marpolbul.2015.11.014.Search in Google Scholar PubMed

60. Awal, M. A., Hale, W. H., Stern, B. Trace Element Concentrations in Mangrove Sediments in the Sundarbans, Bangladesh. Mar. Pollut. Bull. 2009, 58 (12), 1944–1948; https://doi.org/10.1016/j.marpolbul.2009.08.016.Search in Google Scholar PubMed

61. Acharyya, S. K., Lahiri, S., Raymahashay, B. C., Bhowmik, A. Arsenic Toxicity of Groundwater in Parts of the Bengal Basin in India and Bangladesh: The Role of Quaternary Stratigraphy and Holocene Sea-Level Fluctuation. Environ. Geol. 2000, 39, 1127–1137; https://doi.org/10.1007/s002540000107.Search in Google Scholar

62. Chakraborty, M., Mukherjee, A., Ahmed, K. M. A Review of Groundwater Arsenic in the Bengal Basin, Bangladesh and India: From Source to Sink. Curr. Pollut. Rep. 2015, 1 (4), 220–247; https://doi.org/10.1007/s40726-015-0022-0.Search in Google Scholar

63. Chatterjee, M. V. S. F. E., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., Bhattacharya, B. D. Distribution and Possible Source of Trace Elements in the Sediment Cores of a Tropical Macrotidal Estuary and Their Ecotoxicological Significance. Environ. Int. 2007, 33 (3), 346–356; https://doi.org/10.1016/j.envint.2006.11.013.Search in Google Scholar PubMed

64. Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., Saha, S. An Assessment of Trace Element Contamination in Intertidal Sediment Cores of Sunderban Mangrove Wetland, India for Evaluating Sediment Quality Guidelines. Environ. Monit. Assess. 2009, 150 (1), 307–322; https://doi.org/10.1007/s10661-008-0232-7.Search in Google Scholar PubMed

65. Canadian Council of Ministers of the Environment (CCME). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Mercury, Zinc, Lead, Copper, Chrome and Cadmium. In Canadian Environmental Quality Guidelines, 1999; CCME: Canada, 1999.Search in Google Scholar

66. National Oceanic and Atmospheric Administration (NOAA), USA. Chapter 173–204 WAC, 1991/95; WA Dept. of Ecology, 2012.Search in Google Scholar

67. Hanson, P. J., Evans, D. W., Colby, D. R., Zdanowicz, V. S. Assessment of Elemental Contamination in Estuarine and Coastal Environments Based on Geochemical and Statistical Modeling of Sediments. Mar. Environ. Res. 1993, 36, 237–266; https://doi.org/10.1016/0141-1136(93)90091-d.Search in Google Scholar

68. Daskalakis, K. D., O’Connor, T. P. Normalization and Elemental Sediment Contamination in the Coastal States. Environ. Sci. Technol. 1995, 29, 470–477; https://doi.org/10.1021/es00002a024.Search in Google Scholar PubMed

69. Siegel, F. R. Environmental Geochemistry of Potentially Toxic Metals; Springer-Verlag Berlin Heidelberg GmbH: New York, 2002.10.1007/978-3-662-04739-2Search in Google Scholar

70. Khan, R., Islam, M. S., Tareq, A. R. M., Naher, K., Islam, A. R. M. T., Habib, M. A., Siddique, M. A. B., Islam, M. A., Das, S., Rashid, M. B., Ullah, A. A., Miah, M. M. H., Masrura, S. U., Bodrud-Doza, M., Sarker, M. R., Badruzzaman, A. B. M. Distribution, Sources and Ecological Risk of Trace Metals and Polycyclic Aromatic Hydrocarbons in Sediments from a Polluted Urban River in Central Bangladesh. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100318; https://doi.org/10.1016/j.enmm.2020.100318.Search in Google Scholar

71. Ahsan, M. A., Satter, F., Siddique, M. A. B., Akbor, M. A., Ahmed, S., Shajahan, M., Khan, R. Chemical and Physicochemical Characterization of Effluents from the Tanning and Textile Industries in Bangladesh with Multivariate Statistical Approach. Environ. Monit. Assess. 2019, 191 (9), 575; https://doi.org/10.1007/s10661-019-7654-2.Search in Google Scholar PubMed

72. Boruvka, L., Vacek, O., Jehlicka, J. Principal Component Analysis as a Tool to Indicate the Origin of Potentially Toxic Metals in Soils. Geoderma 2005, 128, 289–300; https://doi.org/10.1016/j.geoderma.2005.04.010.Search in Google Scholar

73. Sajn, R., Halamić, J., Peh, Z., Galović, L., Alijagić, J. Assessment of the Natural and Anthropogenic Sources of Chemical Metals in Alluvial Soils from the Drava River Using Multivariate Statistical Methods. J. Geochem. Explor. 2011, 110, 278–289; https://doi.org/10.1016/j.gexplo.2011.06.009.Search in Google Scholar

74. Wu, G. R., Hong, H. L., Yan, C. L. Arsenic Accumulation and Translocation in Mangrove (Aegiceras corniculatum L.) Grown in Arsenic-Contaminated Soils. Int. J. Environ. Res. Publ. Health 2015, 12 (7), 7244–7253; https://doi.org/10.3390/ijerph120707244.Search in Google Scholar PubMed PubMed Central

75. Islam, S. D. U., Bhuiyan, M. A. H. Sundarban Mangrove Forest of Bangladesh: Causes of Degradation and Sustainable Management Options. Environ. Sustain. 2018, 1 (2), 113–131; https://doi.org/10.1007/s42398-018-0018-y.Search in Google Scholar

76. Zhang, J. E., Liu, J. L., Ouyang, Y., Liao, B. W., Zhao, B. L. Removal of Nutrients and Heavy Metals from Wastewater with Mangrove Sonneratia apetala Buch-Ham. Ecol. Eng. 2010, 36, 807–812; https://doi.org/10.1016/j.ecoleng.2010.02.008.Search in Google Scholar

77. Cheng, W., Le, S., Bian, Z., Zhao, Y., Li, Y., Gan, Y. Geographic Distribution of Heavy Metals and Identification of Their Sources in Soils Near Large, Open-Pit Coal Mines Using Positive Matrix Factorization. J. Hazard. Mater. 2020, 387, 121666; https://doi.org/10.1016/j.jhazmat.2019.121666.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0245).


Received: 2023-11-03
Accepted: 2024-01-15
Published Online: 2024-02-06
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2023-0245/html
Scroll to top button