Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Design and Fabrication of Silver Nanoparticles Doped β-cyclodextrin-chitosan Functionalized Graphene Nanocomposite Modified Electrode for Determination of Cu(II)

Author(s): Abdullah Akhdhar*, Mona Saad Binkadem, Waleed Ahmed El-Said* and Amr A. Yakout

Volume 20, Issue 4, 2024

Published on: 13 February, 2024

Page: [275 - 285] Pages: 11

DOI: 10.2174/0115734110296525240206042055

Abstract

Introduction: In this study, a nanocomposite film was prepared by doping silver nanoparticles onto β-cyclodextrin-chitosan functionalized Reduced Graphene Oxide (RGO), denoted as Ag/ β-CD/CS/G nanocomposite. The average diameter of the Ag NPs was found to be 62±17 nm.

Methods: The fabricated composite was applied to monitor trace levels of copper ions in different industrial and environmental water samples. The morphology and microstructure of the fabricated sensor were extensively investigated using different techniques, including XRD, TGA, HR-TEM, FTIR, SEM, XPS, and EDX physicochemical techniques. For the electrochemical monitoring of Cu(II), the Ag/β-CD/CS/G nanocomposite electrode showed remarkable performance in terms of high sensitivity and a low limit of detection that was found to be 0.24 nmol L-1.

Results: The developed sensors showed a linear dynamic range from 10-3 to 10-8 mol L-1 with an R2 of 0.99. The impacts of different electrochemical parameters, including medium pH, scanning rate, and interfering ions, were investigated.

Conclusion: Furthermore, the fabricated modified electrode showed high efficiency for Cu(II) detection in groundwater samples.

Keywords: Nanocomposites, water analysis, β-cyclodextrin-chitosan functionalized reduced graphene oxide, Square wave voltammetry, modified electrode, copper ions.

« Previous
Graphical Abstract
[1]
Zhao, X.H.; Ma, Q.J.; Zhang, X.B.; Huang, B.; Jiang, Q.; Zhang, J.; Shen, G.L.; Yu, R.Q. A highly selective fluorescent sensor for Cu2+ based on a covalently immobilized naphthalimide derivative. Anal. Sci., 2010, 26(5), 585-590.
[http://dx.doi.org/10.2116/analsci.26.585] [PMID: 20467135]
[2]
Shishehbore, M.R.; Nasirizadeh, N.; Shabani, A.H.; Tabatabaee, M. Spectrophotometric determination of trace copper after preconcentration with 1, 5- diphenylcarbazone on microcrystalline naphthalene. Can. J. Anal. Sci. Spectrosc., 2005, 50, 130-134.
[3]
Tutulea-Anastasiu, M.; Wilson, D.; del Valle, M.; Schreiner, C.; Cretescu, I. A solid-contact ion selective electrode for copper(II) using a succinimide derivative as ionophore. Sensors, 2013, 13(4), 4367-4377.
[http://dx.doi.org/10.3390/s130404367] [PMID: 23549362]
[4]
Yousif, A.M.; Zaid, O.F.; El-Said, W.A.; Elshehy, E.A.; Ibrahim, I.A. Silica nanospheres-coated nanofibrillated cellulose for removal and detection of copper(ii) ions in aqueous solutions. Ind. Eng. Chem. Res., 2019, 58(12), 4828-4837.
[http://dx.doi.org/10.1021/acs.iecr.8b06343]
[5]
Isa, I.M.; Saidin, M.I.; Ahmad, M.; Hashim, N.; Ghani, S.A.; Si, S.M. Development of new Copper (II) ion-selective poly(vinyl chloride) membrane electrode based on 2,6-Diacetyl pyridine - (1R)-(-)-fenchone diazine ligand. Int. J. Electrochem. Sci., 2013, 8(9), 11175-11185.
[http://dx.doi.org/10.1016/S1452-3981(23)13178-6]
[6]
Ibrahim, I.; Lim, H.N.; Abou-Zied, O.K.; Huang, N.M.; Estrela, P.; Pandikumar, A. Cadmium sulfide nanoparticles decorated with Au quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(II) ions. J. Phys. Chem. C, 2016, 120(39), 22202-22214.
[http://dx.doi.org/10.1021/acs.jpcc.6b06929]
[7]
Cantalapiedra, A.; Gismera, M.J.; Procopio, J.R.; Sevilla, M.T. Electrochemical sensor based on polystyrene sulfonate–carbon nanopowders composite for Cu (II) determination. Talanta, 2015, 139, 111-116.
[http://dx.doi.org/10.1016/j.talanta.2015.02.049] [PMID: 25882415]
[8]
Wang, S.; Wang, Y.; Zhou, L.; Li, J.; Wang, S.; Liu, H. Fabrication of an effective electrochemical platform based on graphene and AuNPs for high sensitive detection of trace Cu2+. Electrochim. Acta, 2014, 132, 7-14.
[http://dx.doi.org/10.1016/j.electacta.2014.03.114]
[9]
Kim, T.H.; El-Said, W.A.; Choi, J.W. Highly sensitive electrochemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip. Biosens. Bioelectron., 2012, 32(1), 266-272.
[http://dx.doi.org/10.1016/j.bios.2011.12.035] [PMID: 22226411]
[10]
El-Said, W.A.; Al-Bogami, A.S.; Alshitari, W.; El-Hady, D.A.; Saleh, T.S.; El-Mokhtar, M.A.; Choi, J.W. Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern. Biochip J., 2021, 15(3), 287-295.
[http://dx.doi.org/10.1007/s13206-021-00030-3]
[11]
Khalifa, M.M.; Elkhawaga, A.A.; Hassan, M.A.; Zahran, A.M.; Fathalla, A.M.; El-Said, W.A.; El-Badawy, O. Highly specific Electrochemical Sensing of Pseudomonas aeruginosa in patients suffering from corneal ulcers: A comparative study. Sci. Rep., 2019, 9(1), 18320.
[http://dx.doi.org/10.1038/s41598-019-54667-0]
[12]
Luo, S.; Wu, Y.; Mou, Q.; Li, J.; Luo, X. A thio-β-cyclodextrin functionalized graphene/gold nanoparticle electrochemical sensor: a study of the size effect of the gold nanoparticles and the determination of tetrabromobisphenol A. RSC Advances, 2019, 9(31), 17897-17904.
[http://dx.doi.org/10.1039/C9RA02614B] [PMID: 35520600]
[13]
Nguyen, L.N.T.; Dao, T.N.N.; Hoang, V.-T.; Ngo, X-D.; Nhung, P.T.; Le, A-T. Bio-AgNPs-based electrochemical nanosensors for the sensitive determination of 4-nitrophenol in tomato samples: The roles of natural plant extracts in physicochemical parameters and sensing performance. RSC Adv., 2022, 10, 6007-6017.
[14]
Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem., 2010, 82(6), 2341-2346.
[http://dx.doi.org/10.1021/ac9025384] [PMID: 20180560]
[15]
El-Said, W.A.; Al-Bogami, A.S.; Alshitari, W. Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 264, 120237.
[http://dx.doi.org/10.1016/j.saa.2021.120237] [PMID: 34352502]
[16]
Alamry, K.A.; Hussein, M.A.; Choi, J.; El-Said, W.A. Nonenzymatic electrochemical sensor of γ-aminobutyric acid in the presence of a ligand by using graphene oxide modified gold electrode. J. Electroanal. Chem., 2020, 879, 114789.
[http://dx.doi.org/10.1016/j.jelechem.2020.114789]
[17]
Choi, J.H.; Kim, T.H.; El-said, W.A.; Lee, J.H.; Yang, L.; Conley, B.; Choi, J.W.; Lee, K.B. In situ detection of neurotransmitters from stem cell-derived neural interface at the single-cell level via graphene-hybrid SERS nanobiosensing. Nano Lett., 2020, 20(10), 7670-7679.
[http://dx.doi.org/10.1021/acs.nanolett.0c03205] [PMID: 32870013]
[18]
Hussein, M.A.; El-Said, W.A.; Abu-Zied, B.M.; Choi, J.W. Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy. Nano Converg., 2020, 7(1), 15.
[http://dx.doi.org/10.1186/s40580-020-00225-8] [PMID: 32367260]
[19]
Zakaria, M.B.; Guo, Y.; Na, J.; Tahawy, R.; Chikyow, T.; El-Said, W.A.; El-Hady, D.A.; Alshitari, W.; Yamauchi, Y.; Lin, J. Layerby‐layer motif heteroarchitecturing of N,S‐codoped reduced graphene oxide‐wrapped Ni/NiS nanoparticles for the electrochemical oxidation of water. ChemSusChem, 2020, 13(12), 3269-3276.
[http://dx.doi.org/10.1002/cssc.202000159] [PMID: 32133787]
[20]
Shin, J.W.; Kim, K.J.; Yoon, J.; Jo, J.; El-Said, W.A.; Choi, J.W. Silver nanoparticle modified electrode covered by graphene oxide for the enhanced electrochemical detection of dopamine. Sensors, 2017, 17(12), 2771.
[http://dx.doi.org/10.3390/s17122771] [PMID: 29186040]
[21]
Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater., 2009, 19(17), 2782-2789.
[http://dx.doi.org/10.1002/adfm.200900377]
[22]
Zhang, Y.; Wang, Z.; Liu, S.; Zhang, T. In situ growth of Agreduced graphene oxide-carbon nanotube on indium tin oxide and its application for electrochemical sensing. Mater. Res. Bull., 2016, 84, 355-362.
[http://dx.doi.org/10.1016/j.materresbull.2016.08.031]
[23]
Tung, V.C.; Chen, L.M.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett., 2009, 9(5), 1949-1955.
[http://dx.doi.org/10.1021/nl9001525] [PMID: 19361207]
[24]
Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem., 2009, 81(14), 5603-5613.
[http://dx.doi.org/10.1021/ac900136z] [PMID: 19522529]
[25]
Yao, Y.; Ding, Y.; Ye, L.S.; Xia, X.H. Two-step pyrolysis process to synthesize highly dispersed Pt–Ru/carbon nanotube catalysts for methanol electrooxidation. Carbon, 2006, 44(1), 61-66.
[http://dx.doi.org/10.1016/j.carbon.2005.07.010]
[26]
Jayaprakash, M.E.E.N.A.; Kannappan, S. An overview of a sustainable approach to the biosynthesis of AgNPs for electrochemical sensors. Arab. J. Chem., 2022, 15(12), 104324.
[http://dx.doi.org/10.1016/j.arabjc.2022.104324]
[27]
Ivanišević, I. The role of silver nanoparticles in electrochemical sensors for aquatic environmental analysis. Sensors, 2023, 23(7), 3692.
[http://dx.doi.org/10.3390/s23073692] [PMID: 37050752]
[28]
Lotfi, Z.; Gholivand, M.B.; Shamsipur, M.; mirzaei, M. An electrochemical sensor based on Ag nanoparticles decorated on cadmium sulfide nanowires/reduced graphene oxide for the determination of acyclovir. J. Alloys Compd., 2022, 903, 163912.
[http://dx.doi.org/10.1016/j.jallcom.2022.163912]
[29]
Shafa, M.; Ahmad, I.; Hussain, S.; Asif, M.; Pan, Y.; Zairov, R.; Alothman, A.A.; Ouladsmane, M.; Ullah, Z.; Ullah, N.; Lai, C.; Jabeen, U. Ag-Cu nanoalloys: An electrochemical sensor for H2O2 detection. Surf. Interfaces, 2023, 36, 102616.
[http://dx.doi.org/10.1016/j.surfin.2022.102616]
[30]
Yakout, A.A.; El-Hady, D.A. A combination of β-cyclodextrin functionalized magnetic graphene oxide nanoparticles with β-cyclodextrin-based sensor for highly sensitive and selective voltammetric determination of tetracycline and doxycycline in milk samples. RSC Advances, 2016, 6(48), 41675-41686.
[http://dx.doi.org/10.1039/C6RA03787A]
[31]
Nourbakhsh, A.; Rahimnejad, M.; Asghary, M.; Younesi, H. Simultaneous electro-determination of trace copper, lead, and cadmium in tap water by using silver nanoparticles and graphene nanoplates as nanocomposite modified graphite electrode. Microchem. J., 2022, 175, 107137.
[http://dx.doi.org/10.1016/j.microc.2021.107137]
[32]
Zhao, X.; Li, N.; Jing, M.; Zhang, Y.; Wang, W.; Liu, L.; Xu, Z.; Liu, L.; Li, F.; Wu, N. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim. Acta, 2019, 295, 434-443.
[http://dx.doi.org/10.1016/j.electacta.2018.10.039]
[33]
Tang, W.; Ng, S.C. Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nat. Protoc., 2008, 3(4), 691-697.
[http://dx.doi.org/10.1038/nprot.2008.37] [PMID: 18388952]
[34]
Zhu, G.; Zhang, X.; Gai, P.; Zhang, X.; Chen, J. β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid. Nanoscale, 2012, 4(18), 5703-5709.
[http://dx.doi.org/10.1039/c2nr31378b] [PMID: 22886354]
[35]
Yakout, A.A.; Alshitari, W.; Akhdhar, A. Synergistic effect of Cunanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics. Carbohydr. Polym., 2021, 273, 118528.
[http://dx.doi.org/10.1016/j.carbpol.2021.118528] [PMID: 34560942]
[36]
Siburian, R.; Sihotang, H.; Lumban Raja, S.; Supeno, M.; Simanjuntak, C. New route to synthesize of graphene nano sheets. Orient. J. Chem., 2018, 34(1), 182-187.
[http://dx.doi.org/10.13005/ojc/340120]
[37]
Murthy, A.H.C.; Kelele, K.G.C.R. Graphene-supported nanomaterials as electrochemical sensors. Results Chemist., 2021, 3, 100131.
[http://dx.doi.org/10.1016/j.rechem.2021.100131]
[38]
Hassan, H.M.A.; Abdelsayed, V.; Khder, A.E.R.S.; AbouZeid, K.M.; Terner, J.; El-Shall, M.S.; Al-Resayes, S.I.; El-Azhary, A.A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem., 2009, 19(23), 3832-3837.
[http://dx.doi.org/10.1039/b906253j]
[39]
Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(6), 1992-2001.
[http://dx.doi.org/10.1039/C2TA00406B]
[40]
Su, Z.; Sun, D.; Zhang, L.; He, M.; Jiang, Y.; Millar, B.; Douglas, P.; Mariotti, D.; Maguire, P.; Sun, D. Chitosan/silver nanoparticle/graphene oxide nanocomposites with multi-drug release, antimicrobial, and photothermal conversion functions. Materials, 2021, 14(9), 2351.
[http://dx.doi.org/10.3390/ma14092351] [PMID: 33946613]
[41]
Pereira, A.C.; Oliveira, A.E.F.; Bettio, G.B. β-Cyclodextrin electropolymerization: Mechanism, electrochemical behavior, and optimization. Chem. Pap., 2019, 73(7), 1795-1804.
[http://dx.doi.org/10.1007/s11696-019-00732-x]
[42]
Topcu, C.; Lacin, G.; Yilmaz, V.; Coldur, F.; Caglar, B.; Cubuk, O.; Isildak, I. Electrochemical determination of copper(II) in water samples using a novel ion-selective electrode based on a graphite oxide–imprinted polymer composite. Anal. Lett., 2018, 51(12), 1890-1910.
[http://dx.doi.org/10.1080/00032719.2017.1395035]
[43]
Baldisserri, C.; Costa, A.L. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode. J. Nanopart. Res., 2016, 18(4), 96.
[http://dx.doi.org/10.1007/s11051-016-3403-4]
[44]
Wu, T.; Xu, T.; Ma, Z. Sensitive electrochemical detection of copper ions based on the copper(II) ion assisted etching of Au@Ag nanoparticles. Analyst, 2015, 140(23), 8041-8047.
[http://dx.doi.org/10.1039/C5AN01888A] [PMID: 26501137]
[45]
Oliveira, P.R.; Lamy-Mendes, A.C.; Rezende, E.I.P.; Mangrich, A.S.; Marcolino, Junior, L.H.; Bergamini, M.F. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chem., 2015, 171, 426-431.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.023] [PMID: 25308690]
[46]
Mei, C.J.; Yusof, N.A.; Ahmad, A.S.A. Electrochemical determination of lead & copper ions using thiolated calix[4]arene-modified screen-printed carbon electrode. Chemosensors, 2021, 9(7), 157.
[http://dx.doi.org/10.3390/chemosensors9070157]
[47]
Elkhawaga, A.A.; Khalifa, M.M.; El-badawy, O.; Hassan, M.A.; El-Said, W.A. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS One, 2019, 14(7), e0216438.
[http://dx.doi.org/10.1371/journal.pone.0216438] [PMID: 31361746]
[48]
Khan, F.; Akhtar, N.; Jalal, N.; Hussain, I.; Szmigielski, R.; Hayat, M.Q.; Ahmad, H.B.; El-Said, W.A.; Yang, M.; Janjua, H.A. Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells. Mikrochim. Acta, 2019, 186(2), 127.
[http://dx.doi.org/10.1007/s00604-019-3227-x] [PMID: 30684013]
[49]
El-Said, W.A.; Yea, C.H.; Kwon, I.K.; Choi, J.W. Fabrication of electrical cell chip for the detection of anticancer drugs and environmental toxicants effect. Biochip J., 2009, 3(2), 105-112.
[50]
Althagafi, I.I.; Ahmed, S.A.; El-Said, W.A. Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of Aflatoxin B1. PLoS One, 2019, 14(1), e0210652.
[http://dx.doi.org/10.1371/journal.pone.0210652] [PMID: 30650140]
[51]
Zhang, W.; Fan, S.; Li, X.; Liu, S.; Duan, D.; Leng, L.; Cui, C.; Zhang, Y.; Qu, L. Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Mikrochim. Acta, 2020, 187(1), 69.
[http://dx.doi.org/10.1007/s00604-019-4044-y] [PMID: 31853726]
[52]
Qi, X.; Qian, J.; Chen, T.; Lu, D.; Chen, B. Electrochemical Determination of Cu(II) ions based on Ag/Pd alloy for water quality early warning. Int. J. Electrochem. Sci., 2017, 12(6), 5511-5520.
[http://dx.doi.org/10.20964/2017.06.49]
[53]
Zhu, X.; Liu, B.; Hou, H.; Huang, Z.; Zeinu, K.M.; Huang, L.; Yuan, X.; Guo, D.; Hu, J.; Yang, J. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta, 2017, 248, 46-57.
[http://dx.doi.org/10.1016/j.electacta.2017.07.084]
[54]
Simpson, A.; Pandey, R.R.; Chusuei, C.C.; Ghosh, K.; Patel, R.; Wanekaya, A.K. Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media. Carbon, 2018, 127, 122-130.
[http://dx.doi.org/10.1016/j.carbon.2017.10.086]
[55]
Theerthagiri, S.; Rajkannu, P.; Senthil Kumar, P.; Peethambaram, P.; Ayyavu, C.; Rasu, R.; Kannaiyan, D. Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Food Chem. Toxicol., 2022, 167, 113313.
[http://dx.doi.org/10.1016/j.fct.2022.113313] [PMID: 35872257]
[56]
Guo, E. Simultaneous electrochemical determination of lead and copper based on graphenated multi-walled carbon nanotubes. Int. J. Electrochem. Sci., 2015, 10(9), 7341-7348.
[http://dx.doi.org/10.1016/S1452-3981(23)17353-6]
[57]
Li, L.G.; Chen, M.; Hao, H.Q.; Xu, Q.Q.; Wu, J.; Xie, C.G.; Fu, X.C. Electrochemical determination of trace copper(II) based on L -cysteine functionalized gold nanoparticle/CdS nanosphere hybrid. Anal. Methods, 2016, 8(17), 3592-3598.
[http://dx.doi.org/10.1039/C6AY00354K]
[58]
Koudelkova, Z.; Syrovy, T.; Ambrozova, P.; Moravec, Z.; Kubac, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors, 2017, 17(8), 1832.
[http://dx.doi.org/10.3390/s17081832] [PMID: 28792450]
[59]
Zeng, B.; Ding, X.; Zhao, F.; Yang, Y. Electrochemical determination of copper(II) by gold electrodes modified with N-ACETYL CYSTEINE. Anal. Lett., 2002, 35(14), 2245-2258.
[http://dx.doi.org/10.1081/AL-120016099]
[60]
Hermouche, L.; Aqil, Y.; Abbi, K.; El Hamdouni, Y.; Ouanji, F.; El Hajjaji, S.; El Mahi, M.; Lotfi, E.; Labjar, N. Eco-friendly modified carbon paste electrode by Bigarreau Burlat kernel shells for simultaneous trace detection of cadmium, lead, and copper. CDC, 2021, 32, 100642.
[http://dx.doi.org/10.1016/j.cdc.2020.100642]
[61]
Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta, 2015, 172, 7-11.
[http://dx.doi.org/10.1016/j.electacta.2015.01.026]
[62]
Tesfaye, E.; Chandravanshi, B.S.; Negash, N.; Tessema, M. Development of a new electrochemical method for the determination of copper(II) at trace levels in environmental and food samples. RSC Adv., 2022, 12(54), 35367-35382.
[http://dx.doi.org/10.1039/D2RA06941E] [PMID: 36540237]
[63]
Fayazi, M.; Ghanei-Motlagh, M.; Karami, C. Application of magnetic nanoparticles modified with L-cysteine for pre-concentration and voltammetric detection of copper(II). Microchem. J., 2022, 181, 107652.
[http://dx.doi.org/10.1016/j.microc.2022.107652]
[64]
Zaid, O.F.; El-Said, W.A.; Yousif, A.M.; Galhoum, A.A.; Elshehy, E.A.; Ibrahim, I.A.; Guibal, E. Synthesis of microporous nanocomposite (hollow spheres) for fast detection and removal of As(V) from contaminated water. Chem. Eng. J., 2020, 390, 124439.
[http://dx.doi.org/10.1016/j.cej.2020.124439]

© 2024 Bentham Science Publishers | Privacy Policy