Skip to main content
Log in

Low-Cycle Fatigue of the Weld Metal of a Low-Carbon Steel Welded Joint after High-Temperature Action

  • APPLIED PROBLEMS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Dynamic mechanical analysis is used to perform comparative low-cycle fatigue tests according to the scheme of bending the weld metal of a low-carbon steel 22K welded joint after a high-temperature action according to the following schedule: holding at 1200°C for 3.7 h followed by slow cooling. The weld metal in the initial state is shown to be characterized by low-cycle fatigue high resistance: the fatigue limit for finite life at N = 3.5 × 104 cycles is σRN = 340 MPa. The high-temperature action additionally increases σRN by 23%. The influence of the microstructure of the weld on the fatigue strength characteristics and fracture mechanisms is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. L. S. Livshits and A. N. Khakimov, Physical Metallurgy of Welding and Heat Treatment of Welded Joints (Mashinostroenie, Moscow, 1989).

    Google Scholar 

  2. Yu. V. Poletaev, V. Yu. Poletaev, and V. V. Shchepkin, “Friction welding of small-diameter connecting and branch pipes made of 22K carbon steel,” Vestn. Don. Gos. Tekh. Univ., No. 3, 89–95 (2017).

  3. Yu. V. Poletaev, V. Yu. Poletaev, and A. E. Khubiev, “Single-pass electric arc welding of thick-sheet steel 22K structures under a thin slag layer,” Svar. Proizvod., No. 5, 3–8 (2017).

  4. G. P. Fetisov and F. A. Garifullin, Physical Metallurgy and Technology of Metals (Oniks, Moscow, 2007).

    Google Scholar 

  5. Steel and Alloy Grade Guide, Ed. by A. S. Zubchenko (Mashinostroenie, Moscow, 2003).

    Google Scholar 

  6. C.-C. Yang and C.-L. Liu, “Improvement of the mechanical properties of 1022 carbon steel coil by using the Taguchi method to optimize spheroidized annealing conditions,” Materials 9, 693 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. J. L. Rempe and D. L. Knudson, “High temperature thermal and structural material properties for metals used in LWR Vessels,” in Proceedings of ICAPP’08 (Anaheim, 2008), 8220.

  8. P. D. Odesskii and A. A. Egorova, “Strength of steel for unique engineering structures,” Russ. Metall. (Metally) 2012 (10), 911–918 (2012).

    Article  ADS  Google Scholar 

  9. S. A. Nikulin, S. O. Rogachev, S. G. Vasil’ev, V. A. Belov, and A. A. Komissarov, “Effect of long-term annealing on the impact toughness of 22K steel,” Russ. Metall. (Metally) 2021 (4), 149–153 (2021).

    Article  Google Scholar 

  10. S. A. Nikulin, S. O. Rogachev, S. G. Vasil’ev, V. A. Belov, V. Yu. Turilina, and Yu. A. Nikolaev, “Effect of high temperatures on the mechanical properties of grade 22K steel,” Russ. Metall. (Metally) 2020 (10), 1157–1161 (2020).

    Article  ADS  Google Scholar 

  11. S. A. Nikulin, S. O. Rogachev, V. A. Belov, A. A. Komissarov, V. Yu. Turilina, N. V. Shplis, and Yu. A. Nikolaev, “Influence of long-term high-temperature action on impact toughness of base metal and weld metal of 22K steel welded joint,” Izv. Ferrous Metall. 64 (7), 498–509 (2021).

    Article  CAS  Google Scholar 

  12. G. L. Thinnes, G. E. Korth, and S. A. Chavez, “High-temperature creep and tensile data for pressure vessel steels SA533B1 and SA508-CL2,” Nucl. Eng. Design 148, 343–350 (1994).

    Article  CAS  Google Scholar 

  13. V. Loktionov, I. Lyubashevskaya, O. Sosnin, and E. Terentyev, “Short-term strength properties and features of high-temperature deformation of VVER reactor pressure vessel steel 15Kh2NMFA-A within the temperature range 20–1200°C,” Nucl. Eng. Design 352, 110188 (2019).

    Article  CAS  Google Scholar 

  14. S. A. Nikulin, S. O. Rogachev, V. A. Belov, and N. V. Shplis, “Effect of long-term heat treatment on the structure and high-temperature mechanical properties of 22K and 09G2C steels,” in Proceedings of X International School Dedicated to the 10th Anniversary of the Laboratory “Strength Physics and Intelligent Diagnostic Systems” of TGU and LXIII International Conference on Challenging Problems of Strength (Izd. TGU, Togliatti, 2021), p. 62.

  15. Y. Kim and W. Hwang, “High-cycle, low-cycle, extremely low-cycle fatigue and monotonic fracture behaviors of low-carbon steel and its welded joint,” Materials 12, 4111 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Y. Huang, D. Wagner, C. Bathias, and J. L. Chaboche, “Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon–manganese steel,” Int. J. Fatigue 33, 115–121 (2011).

    Article  CAS  Google Scholar 

  17. M. Zhang, P. Yang, and Y. Tan, “Micromechanisms of fatigue crack nucleation and short crack growth in a low carbon steel under low cycle impact fatigue loading,” Int. J. Fatigue 21, 823–830 (1999).

    Article  CAS  Google Scholar 

  18. O. Prymak, A. Klocke, B. Kahl-Nieke, and M. Epple, “Fatigue of orthodontic nickel–titanium (NiTi) wires in different fluids under constant mechanical stress,” Mater. Sci. Eng., A 378, 110–114 (2004).

    Article  Google Scholar 

  19. M. S. D. O. Araújo, E. Nobre Dantas Grassi, and J. C. de Araújo, “Fatigue tests of superelastic NiTi wires: an analysis using factorial design in single cantilever bending,” Smart Mater. Struct. 30 (12), 25017 (2021).

  20. S. A. Nikulin, S. O. Rogachev, V. A. Belov, M. Yu. Zadorozhnyy, N. V. Shplis, and M. M. Skripalenko, “Effect of prolonged thermal exposure on low-cycle bending fatigue resistance of low-carbon steel,” Metals 12, 281 (2022).

    Article  CAS  Google Scholar 

  21. Q. Zhou, L. Qian, J. Meng, L. Zhaoa, and F. Zhang, “Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel,” Mater. Design 85, 487–496 (2015).

    Article  CAS  Google Scholar 

  22. M. A. Shtremel’, Strength of Alloys. Part II. Deformation (MISiS, Moscow, 1997).

  23. V. F. Terent’ev, Fatigue Strength of Metals and Alloys (Intermet Inzhiniring, Moscow, 2002).

    Google Scholar 

Download references

Funding

This work was supported by Moscow Polytechnic University within the framework of the P.L. Kapitsa grant program.

The structural investigations were carried out on the equipment of the Materials Science and Metallurgy core facility of the National University of Science and Technology MISiS and supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Rogachev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulin, S.A., Rogachev, S.O., Belov, V.A. et al. Low-Cycle Fatigue of the Weld Metal of a Low-Carbon Steel Welded Joint after High-Temperature Action. Russ. Metall. 2023, 1501–1509 (2023). https://doi.org/10.1134/S0036029523100257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523100257

Keywords:

Navigation