Skip to main content

Advertisement

Log in

Challenges and opportunities for discovering the biology of rare genetic diseases of the brain

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Diseases of the human nervous system are an important cause of morbidity and mortality worldwide. These disorders arise out of multiple aetiologies of which rare genetic mutations in genes vital to nervous system development and function are an important cause. The diagnosis of such rare disorders is challenging due to the close overlap of clinical presentations with other diseases that are not of genetic origin. Further, understanding the mechanisms by which mutations lead to altered brain structure and function is also challenging, given that the brain is not readily accessible for tissue biopsy. However, recent developments in modern technologies have opened up new opportunities for the analysis of rare genetic disorders of the brain. In this review, we discuss these developments and strategies by which they can be applied effectively for better understanding of rare diseases of the brain. This will lead to the development of new clinical strategies to manage brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Ahmed PH, Singh P, Thakur R, et al. 2021 Genomic sequencing of Lowe syndrome trios reveal a mechanism for the heterogeneity of neurodevelopmental phenotypes. bioRxiv https://doi.org/10.1101/2021.06.22.449382

  • Akhtar BM, Bhatia P, Acharya S, et al. 2022 A human stem cell resource to decipher the biochemical and cellular basis of neurodevelopmental defects in Lowe syndrome. Biol. Open 11 bio059066

  • Bhattacharyya A and Zhao X 2016 Human pluripotent stem cell models of Fragile X syndrome. Mol. Cell Neurosci. 73 43–51

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya T, Ghosh A, Verma S, et al. 2023 Structural rationale to understand the effect of disease-associated mutations on Myotubularin. Curr. Res. Struct. Biol. 5 100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bothwell SP, Farber LW, Hoagland A, et al. 2010 Species-specific difference in expression and splice-site choice in Inpp5b, an inositol polyphosphate 5-phosphatase paralogous to the enzyme deficient in Lowe Syndrome. Mamm. Genome 21 458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corominas J, Smeekens SP, Nelen MR, et al. 2022 Clinical exome sequencing – Mistakes and caveats. Hum. Mutat. 43 1041–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Daliry A and Pereira ENGS 2021 Role of maternal microbiota and nutrition in early-life neurodevelopmental disorders. Nutrients 13 3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallah MS and Eubanks JH 2020 Seizures in mouse models of rare neurodevelopmental disorders. Neuroscience 445 50–68

    Article  CAS  PubMed  Google Scholar 

  • Ferrari A 2022 Global, regional, and national burden of 12 mental disorders in 204 countries and territories 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9 137–150

    Article  Google Scholar 

  • Festa BP, Berquez M, Gassama A, et al. 2019 OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum. Mol. Genet. 28 1931–1946

    Article  CAS  PubMed  Google Scholar 

  • Florio M and Huttner WB 2014 Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141 2182–2194

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy A, Mishra A, Soni MR, et al. 2019 Multi-gene testing in neurological disorders showed an improved diagnostic yield: data from over 1000 Indian patients. J. Neurol. 266 1919–1926

    Article  PubMed  Google Scholar 

  • GBD 2016 Neurology Collaborators 2019 Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18 459–480

  • Grody WW 2019 The transformation of medical genetics by clinical genomics: hubris meets humility. Genet. Med. 21 1916–1926

    Article  PubMed  Google Scholar 

  • Gundacker C, Forsthuber M, Szigeti T, et al. 2021 Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int. J. Hyg. Environ. Health 238 113855

    Article  CAS  PubMed  Google Scholar 

  • Homman-Ludiye J and Bourne JA 2020 The Marmoset: The next frontier in understanding the development of the human brain. ILAR J. 61 248–259

    Article  CAS  PubMed  Google Scholar 

  • Hommersom MP, Buijsen RAM, van Roon-Mom WMC, et al. 2022 Human induced pluripotent stem cell-based modelling of spinocerebellar ataxias. Stem Cell Rev. Rep. 18 441–456

    Article  PubMed  Google Scholar 

  • Ijomone OM, Olung NF, Akingbade GT, et al. 2020 Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. J. Trace Elem. Med. Biol. 62 126638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito R, Takahashi T and Ito M 2018 Humanized mouse models: Application to human diseases. J. Cell Physiol. 233 3723–3728

    Article  CAS  PubMed  Google Scholar 

  • Jänne PA, Suchy SF, Bernard D, et al. 1998 Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Invest. 101 2042–2053

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Ramadesikan S, Black AF, et al. 2023 Heterogeneity in Lowe syndrome: mutations affecting the phosphatase domain of OCRL1 differ in impact on enzymatic activity and severity of cellular phenotypes. Biomolecules 13 615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta ZB, Pietka G and Lowe M 2014 The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic 15 471–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miosge LA, Field MA, Sontani Y, et al. 2015 Comparison of predicted and actual consequences of missense mutations. Proc. Natl. Acad. Sci. USA 112 E5189–E5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers A and McGonigle P 2019 Overview of transgenic mouse models for Alzheimer’s disease. Curr. Protoc. Neurosci. 89 e81

    Article  PubMed  Google Scholar 

  • Nakatsuka N, Moorjani P, Rai N, et al. 2017 The promise of discovering population-specific disease-associated genes in South Asia. Nat. Genet. 49 1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oltrabella F, Pietka G, Ramirez IB-R, et al. 2015 The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule. PLoS Genet 11 e1005058

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardiñas AF, Owen MJ and Walters JTR 2021 Pharmacogenomics: A road ahead for precision medicine in psychiatry. Neuron 109 3914–3929

    Article  PubMed  Google Scholar 

  • Penney J, Ralvenius WT and Tsai LH 2020 Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol. Psychiatry 25 148–167

    Article  PubMed  Google Scholar 

  • Pisanu C and Squassina A 2023 RNA biomarkers in bipolar disorder and response to mood stabilizers. Int. J. Mol. Sci. 24 10067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghu P, Joseph A, Krishnan H, et al. 2019 Phosphoinositides: Regulators of nervous system function in health and disease. Front. Mol. Neurosci. 12 208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadesikan S, Skiba L, Lee J, et al. 2021 Genotype and phenotype in Lowe syndrome: specific OCRL1 patient mutations differentially impact cellular phenotypes. Hum. Mol. Genet. 30 198–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez IB-R, Pietka G, Jones DR, et al. 2012 Impaired neural development in a zebrafish model for Lowe syndrome. Hum. Mol. Genet. 21 1744–1759

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Aziz N, Bale S, et al. 2015 Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17 405–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo FB, Cugola FR, Fernandes IR, et al. 2015 Induced pluripotent stem cells for modeling neurological disorders. World J. Transplant. 5 209–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadee W, Wang D, Hartmann K, et al. 2023 Pharmacogenomics: Driving personalized medicine. Pharmacol. Rev. 75 789–814

    Article  CAS  PubMed  Google Scholar 

  • Sagar R, Dandona R, Gururaj G, et al. 2020 The burden of mental disorders across the states of India: the Global Burden of Disease Study 1990–2017. Lancet Psychiatry 7 148–161

    Article  Google Scholar 

  • Saha S, Krishnan H and Padinjat R 2023 IMPA1 dependent regulation of plasma membrane phosphatidylinositol 4,5-bisphosphate turnover and calcium signalling by lithium. bioRxiv https://doi.org/10.1101/2022.10.14.512101

  • Sharma Y, Saha S, Joseph A, et al. 2020 In vitro human stem cell derived cultures to monitor calcium signaling in neuronal development and function. Wellcome Open Res. https://doi.org/10.12688/wellcomeopenres.15626.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Inoue H, Wu JC, et al. 2017 Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16 115–130

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Sharma M, Kumar GA, et al. 2021 The burden of neurological disorders across the states of India: the Global Burden of Disease Study 1990–2019. Lancet Glob. Health 9 e1129–e1144

    Article  Google Scholar 

  • Sterlini B, Fruscione F, Baldassari S, et al. 2020 Progress of induced pluripotent stem cell technologies to understand genetic epilepsy. Int. J. Mol. Sci. 21 482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susco SG, Ghosh S, Mazzucato P, et al. 2022 Molecular convergence between Down syndrome and fragile X syndrome identified using human pluripotent stem cell models. Cell Rep. 40 111312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidball AM and Parent JM 2016 Exciting cells: modeling genetic epilepsies with patient-derived induced pluripotent stem cells. Stem Cells 34 27–33

    Article  PubMed  Google Scholar 

  • Vadodaria KC, Ji Y, Skime M, et al. 2019 Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons. Mol. Psychiatry 24 795–807

    Article  CAS  PubMed  Google Scholar 

  • Wall JD, Sathirapongsasuti JF, Gupta R, et al. 2023 South Asian medical cohorts reveal strong founder effects and high rates of homozygosity. Nat. Commun. 14 3377

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Ward ME, Chen R, et al. 2017 Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening. Stem Cell Rep. 9 1221–1233

    Article  CAS  Google Scholar 

  • Zeng X, Hunsberger JG, Simeonov A, et al. 2014 Concise review: modeling central nervous system diseases using induced pluripotent stem cells. Stem Cells Transl. Med. 3 1418–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by the Department of Atomic Energy, Government of India, under Project Identification No. RTI 4006; the Department of Biotechnology, Government of India; the Pratiksha Trust; and Rohini Nilekani Philanthropies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padinjat Raghu.

Additional information

Corresponding editor: Sudha Bhattacharya

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghu, P., Sharma, Y., Devi, A.B.N.S. et al. Challenges and opportunities for discovering the biology of rare genetic diseases of the brain. J Biosci 49, 26 (2024). https://doi.org/10.1007/s12038-023-00408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00408-5

Keywords

Navigation