Skip to main content

Advertisement

Log in

Non-viral delivery of nucleic acid for treatment of rare diseases of the muscle

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Rare muscular disorders (RMDs) are disorders that affect a small percentage of the population. The disorders which are attributed to genetic mutations often manifest in the form of progressive weakness and atrophy of skeletal and heart muscles. RMDs includes disorders such as Duchenne muscular dystrophy (DMD), GNE myopathy, spinal muscular atrophy (SMA), limb girdle muscular dystrophy, and so on. Due to the infrequent occurrence of these disorders, development of therapeutic approaches elicits less attention compared with other more prevalent diseases. However, in recent times, improved understanding of pathogenesis has led to greater advances in developing therapeutic options to treat such diseases. Exon skipping, gene augmentation, and gene editing have taken the spotlight in drug development for rare neuromuscular disorders. The recent innovation in targeting and repairing mutations with the advent of CRISPR technology has in fact opened new possibilities in the development of gene therapy approaches for these disorders. Although these treatments show satisfactory therapeutic effects, the susceptibility to degradation, instability, and toxicity limits their application. So, an appropriate delivery vector is required for the delivery of these cargoes. Viral vectors are considered potential delivery systems for gene therapy; however, the associated concurrent immunogenic response and other limitations have paved the way for the applications of other non-viral systems like lipids, polymers, cell-penetrating peptides (CPPs), and other organic and inorganic materials. This review will focus on non-viral vectors for the delivery of therapeutic cargoes in order to treat muscular dystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aartsma-Rus A and Krieg AM 2017 FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther. 27 1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afzal E, Zakeri S, Keyhanvar P, et al. 2013 Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy. Int. J. Nanomed. 2943–2960

  • Al-Hakkani MF 2023 A new validated facile HPLC analysis method to determine methylprednisolone including its derivatives and practical application. Sci. Rep. 13 11548

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Andreana I, Repellin M, Carton F, et al. 2021 Nanomedicine for gene delivery and drug repurposing in the treatment of muscular dystrophies. Pharmaceutics 13 278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argov Z and Mitrani Rosenbaum S 2015 GNE myopathy: two clusters with history and several founder mutations. J. Neuromuscul. Dis. 2 S73–S76

    Article  PubMed  PubMed Central  Google Scholar 

  • Betts C, Saleh AF, Arzumanov AA, et al. 2012 Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Acids 1 e38

    Article  Google Scholar 

  • Bhokisham N, Laudermilch E, Traeger LL, et al. 2023 CRISPR-Cas system: The current and emerging translational landscape. Cells 12 1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibee KP, Cheng Y-J, Ching JK, et al. 2014 Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. FASEB J. 28 2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bish LT, Sleeper MM, Forbes SC, et al. 2012 Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol. Ther. 20 580–589

    Article  CAS  PubMed  Google Scholar 

  • Blake DJ, Weir A, Newey SE, et al. 2002 Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82 291–329

    Article  CAS  PubMed  Google Scholar 

  • Bondì ML and Craparo EF 2010 Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opin. Drug Deliv. 7 7–18

    Article  PubMed  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, et al. 1995 A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci.USA 92 7297–7301

  • Bushby K, Finkel R, Birnkrant DJ, et al. 2010 Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 9 77–93

    Article  PubMed  Google Scholar 

  • Campeau P, Chapdelaine P, Seigneurin-Venin S, et al. 2001 Transfection of large plasmids in primary human myoblasts. Gene Ther. 8 1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Carrillo N, Malicdan MC and Huizing M 2018 2018 GNE myopathy: etiology, diagnosis, and therapeutic challenges. Neurother. 154 900–914

    Article  Google Scholar 

  • Carrillo N, Malicdan MC, Leoyklang P, et al. 2021 Safety and efficacy of N-acetylmannosamine (ManNAc) in patients with GNE myopathy: an open-label phase 2 study. Genet. Med. 23 2067–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cernisova V, Lu-Nguyen N, Trundle J, et al. 2023 Microdystrophin gene addition significantly improves muscle functionality and diaphragm muscle histopathology in a fibrotic mouse model of Duchenne muscular dystrophy. Int. J. Mol. Sci. 24 8174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae S-Y, Jeong E, Kang S, et al. 2022 Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing. J. Control. Release 345 108–119

    Article  CAS  PubMed  Google Scholar 

  • Chiriboga CA 2017 Nusinersen for the treatment of spinal muscular atrophy. Expert Rev. Neurother. 17 955–962

    Article  CAS  PubMed  Google Scholar 

  • Choi E and Koo T 2022 Muscular dystrophy therapy using viral vector-based CRISPR/Cas muscular dystrophy therapy using viral vector-based CRISPR/Cas; in Biotechnologies for gene therapy: RNA, CRISPR, nanobots, and preclinical applications (Springer) pp 61–83

  • Colapicchioni V, Millozzi F, Parolini O, et al. 2022 Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14 e1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossrates M 2019 AveXis receives FDA approval for Zolgensma®, the first and only gene therapy for pediatric patients with spinal muscular atrophy (SMA). https://www.novartis.com/news/media-releases/avexis-receives-fda-approval-zolgensma-first-and-only-genetherapy-pediatric-patients-spinal-muscular-atrophy-sma

  • Crudele JM and Chamberlain JS 2018 Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat. Commun. 9 3497

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Cui Z, Jiao Y, Pu L, et al. 2022 The progress of non-viral materials and methods for gene delivery to skeletal muscle. Pharmaceutics 14 2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davé UP, Jenkins NA and Copeland NG 2004 Gene therapy insertional mutagenesis insights. Science 303 333

    Article  PubMed  Google Scholar 

  • van Deutekom J, Beekman C, Bijl S, et al. 2023 Next generation exon 51 skipping antisense oligonucleotides for Duchenne muscular dystrophy. Nucleic Acid Ther. 33 193–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon S 2020a Viltolarsen: first approval. Drugs 80 1027–1031

    Article  CAS  PubMed  Google Scholar 

  • Dhillon S 2020b Risdiplam: first approval. Drugs 80 1853–1858

    Article  CAS  PubMed  Google Scholar 

  • Đorđević S, Gonzalez MM, Conejos-Sánchez I, et al. 2022 Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 12 500–525

    Article  PubMed  Google Scholar 

  • Doudna JA and Charpentier E 2014 The new frontier of genome engineering with CRISPR-Cas9. Science 346 1258096

    Article  PubMed  Google Scholar 

  • Duan D 2018a Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol. Ther. 26 2337–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan D 2018b Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystrophy patients. Hum. Gene Ther. 29 733–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar CE, High KA, Joung JK, et al. 2018 Gene therapy comes of age. Science 359 eaan4672

  • Eagle M, Baudouin SV, Chandler C, et al. 2002 Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul. Disord. 12 926–929

    Article  PubMed  Google Scholar 

  • Ebner DC, Bialek P, F El-Kattan A, et al. 2015 Strategies for skeletal muscle targeting in drug discovery. Curr. Pharm. Des. 21 1327–1336

  • Eisenberg I, Avidan N, Potikha T, et al. 2001 The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29 83–87

    Article  CAS  PubMed  Google Scholar 

  • Elangkovan N and Dickson G 2021 Gene therapy for Duchenne muscular dystrophy. J. Neuromuscul. Dis. 8 S303–S316

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery AEH 2002 The muscular dystrophies. Lancet 359 687–695

    Article  CAS  PubMed  Google Scholar 

  • Engin AB, Nikitovic D, Neagu M, et al. 2017 Mechanistic understanding of nanoparticles’ interactions with extracellular matrix: the cell and immune system. Part. Fibre Toxicol. 14 1–16

    Article  Google Scholar 

  • Eslahi A, Alizadeh F, Avan A, et al. 2023 New advancements in CRISPR based gene therapy of Duchenne muscular dystrophy. Gene 867 147358

    Article  CAS  PubMed  Google Scholar 

  • Ferlini A, Sabatelli P, Fabris M, et al. 2010 Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP–AON complexes. Gene Ther. 17 432–438

    Article  CAS  PubMed  Google Scholar 

  • Ferrer A, Wells KE and Wells DJ 2000 Immune responses to dystropin: implications for gene therapy of Duchenne muscular dystrophy. Gene Ther. 7 1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Filonova G and Aartsma-Rus A 2023 Next steps for the optimization of exon therapy for Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 23 133–143

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Hacein-Bey-Abina S and Cavazzana-Calvo M 2010 20 years of gene therapy for SCID. Nat. Immunol. 11 457–460

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A and Martin F 1997 Polyethylene glycol-coated (pegylated) liposomal doxorubicin: rationale for use in solid tumours. Drugs 54 15–21

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhao J, Han G, et al. 2014 Effective dystrophin restoration by a novel muscle-homing peptide–morpholino conjugate in dystrophin-deficient mdx mice. Mol. Ther. 22 1333–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies AR and Lieber RL 2011 Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44 318–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goemans N, Mercuri E, Belousova E, et al. 2018 A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul. Disord. 28 4–15

    Article  PubMed  Google Scholar 

  • Gushchina LV, Frair EC, Rohan N, et al. 2021 Lack of toxicity in nonhuman primates receiving clinically relevant doses of an AAV9. U7snRNA vector designed to induce DMD exon 2 skipping. Hum. Gene Ther. 32 882–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond SM, Hazell G, Shabanpoor F, et al. 2016 Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 113 10962–10967

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hartigan-O’Connor D and Chamberlain JS 2000 Developments in gene therapy for muscular dystrophy. Microsc. Res. Tech. 48 223–238

    Article  PubMed  Google Scholar 

  • Heo Y-A 2020 Golodirsen: first approval. Drugs 80 329–333

    Article  PubMed  Google Scholar 

  • Hersh J, Condor Capcha JM, Iansen Irion C, et al. 2021 Peptide-functionalized dendrimer nanocarriers for targeted microdystrophin gene delivery. Pharmaceutics 13 2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho JK, White PJ and Pouton CW 2018 Self-crosslinking lipopeptide/DNA/PEGylated particles: a new platform for DNA vaccination designed for assembly in aqueous solution. Mol. Ther. Acids 12 504–517

    Article  Google Scholar 

  • Huang D, Yue F, Qiu J, et al. 2020 Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle. Acta Biomater. 118 196–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jativa SD, Thapar N, Broyles D, et al. 2019 Enhanced delivery of plasmid DNA to skeletal muscle cells using a DLC8-binding peptide and ASSLNIA-modified PAMAM dendrimer. Mol. Pharm. 16 2376–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson J, Rhodes KR, Green JJ, et al. 2020 Poly (beta-amino ester) s as gene delivery vehicles: challenges and opportunities. Expert Opin. Drug Deliv. 17 1395–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller CG, Shin Y, Monteys AM, et al. 2022 An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion. Nat. Commun. 13 1150

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kenjo E, Hozumi H, Makita Y, et al. 2021 Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12 7101

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kirschner J and Cathomen T 2020 Gene therapy for monogenic inherited disorders: opportunities and challenges. Dtsch. Arztebl. Int. 117 878

    PubMed  PubMed Central  Google Scholar 

  • Koebis M, Kiyatake T, Yamaura H, et al. 2013 Ultrasound-enhanced delivery of morpholino with Bubble liposomes ameliorates the myotonia of myotonic dystrophy model mice. Sci. Rep. 3 2242

    Article  PubMed  PubMed Central  Google Scholar 

  • Kofron MD and Laurencin CT 2006 Bone tissue engineering by gene delivery. Adv. Drug Deliv. Rev. 58 555–576

    Article  CAS  PubMed  Google Scholar 

  • Kwon JB, Ettyreddy AR, Vankara A, et al. 2020 In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy. Mol. Ther. Clin. Dev. 19 320–329

    Article  CAS  Google Scholar 

  • Lee K, Conboy M, Park HM, et al. 2017 Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1 889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W-S, Kim Y-K, Zhang Q, et al. 2014 Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis. Nanomed. Nanotechnol. Biol. Med. 10 525–534

    CAS  Google Scholar 

  • Lehto T, Castillo Alvarez A, Gauck S, et al. 2014 Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res. 42 3207–3217

    Article  CAS  PubMed  Google Scholar 

  • Lejman J, Panuciak K, Nowicka E, et al. 2023 Gene Therapy in ALS and SMA: Advances, Challenges and Perspectives. Int. J. Mol. Sci. 24 1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lek A, Wong B, Keeler A, et al. 2023 Unexpected death of a duchenne muscular dystrophy patient in an N-of-1 trial of rAAV9-delivered CRISPR-transactivator. medRxiv https://doi.org/10.1101/2023.05.16.23289881

  • Lila ASA and Ishida T 2017 Liposomal delivery systems: design optimization and current applications. Biol. Pharm. Bull. 40 1–10

    Article  PubMed  Google Scholar 

  • Lim J, Eftimov F, Verhamme C, et al. 2021 Intravenous immunoglobulins as first-line treatment in idiopathic inflammatory myopathies: a pilot study. Rheumatology 60 1784–1792

    Article  PubMed  Google Scholar 

  • Lim KRQ, Woo S, Melo D, et al. 2022 Development of DG9 peptide-conjugated single-and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 119 e2112546119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn MR and Wang CH 2008 Spinal muscular atrophy. Lancet 371 2120–2133

    Article  PubMed  Google Scholar 

  • Magin-Lachmann C, Kotzamanis G, D’aiuto L, et al. 2004 In vitro and in vivo delivery of intact BAC DNA–comparison of different methods. J. Gene Med. 6 195–209

    Article  CAS  PubMed  Google Scholar 

  • Matsuo M 1996 Duchenne/Becker muscular dystrophy: From molecular diagnosis to gene therapy. Brain Dev. 18 167–172

    Article  CAS  PubMed  Google Scholar 

  • Mendell JR, Al-Zaidy S, Shell R, et al. 2017 Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377 1713–1722

    Article  CAS  PubMed  Google Scholar 

  • Mendell J, Shieh P, Sahenk Z, et al. 2023 A phase 2 clinical trial evaluating the safety and efficacy of delandistrogene moxeparvovec (SRP-9001) in patients with Duchenne muscular dystrophy (DMD)(S48.004). Neurology 100 https://doi.org/10.1212/WNL.0000000000202973

  • Mercuri E, Osorio AN, Muntoni F, et al. 2023 Safety and effectiveness of ataluren in patients with nonsense mutation DMD in the STRIDE Registry compared with the CINRG Duchenne Natural History Study (2015–2022): 2022 interim analysis. J. Neurol. 270 3896–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min Y-L, Bassel-Duby R and Olson EN 2019 CRISPR correction of Duchenne muscular dystrophy. Annu. Rev. Med. 70 239–255

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F and High KA 2017 Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu. Rev. Virol. 4 511–534

    Article  CAS  PubMed  Google Scholar 

  • Mitrani Rosenbaum S, Yakovlev L, Cohen MB, et al. 2012 Sustained expression and safety of human GNE in normal mice after gene transfer based on AAV8 systemic delivery. Neuromuscul. Disord. 22 1015–1024

    Article  PubMed  Google Scholar 

  • Miyatake S, Mizobe Y, Takizawa H, et al. 2018 Exon skipping therapy using phosphorodiamidate morpholino oligomers in the mdx 52 mouse model of Duchenne muscular dystrophy. Methods Mol. Biol. 1687 123–141

    Article  CAS  PubMed  Google Scholar 

  • Morgan JE 1994 Cell and gene therapy in Duchenne muscular dystrophy. Hum. Gene Ther. 5 165–173

    Article  CAS  PubMed  Google Scholar 

  • Mori-Yoshimura M, Suzuki N, Katsuno M, et al. 2023 Efficacy confirmation study of aceneuramic acid administration for GNE myopathy in Japan. Orphanet J. Rare Dis. 18 241

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullard A 2023 FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat. Rev. Drug Discov. 22 610

    Article  CAS  PubMed  Google Scholar 

  • Naldini L 2015 Gene therapy returns to centre stage. Nature 526 351–360

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nance ME, Hakim CH, Yang NN, et al. 2018 Nanotherapy for Duchenne muscular dystrophy. Nanomed. Nanobiotechnol. 10 e1472

    Article  Google Scholar 

  • Nance ME, Shi R, Hakim CH, et al. 2019 AAV9 edits muscle stem cells in normal and dystrophic adult mice. Mol. Ther. 27 1568–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak S and Herzog RW 2010 Progress and prospects: immune responses to viral vectors. Gene Ther. 17 295–304

    Article  CAS  PubMed  Google Scholar 

  • Negishi Y, Ishii Y, Shiono H, et al. 2014 Bubble liposomes and ultrasound exposure improve localized morpholino oligomer delivery into the skeletal muscles of dystrophic mdx mice. Mol. Pharm. 11 1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Negishi Y and Nomizu M 2019 Laminin-derived peptides: Applications in drug delivery systems for targeting. Pharmacol. Ther. 202 91–97

    Article  CAS  PubMed  Google Scholar 

  • Nemunaitis G, Jay CM, Maples PB, et al. 2011 Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene lipoplex. Hum. Gene Ther. 22 1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemunaitis G, Maples PB, Jay C, et al. 2010 Hereditary inclusion body myopathy: single patient response to GNE gene Lipoplex therapy. J. Gene Med. 12 403–412

    Article  CAS  PubMed  Google Scholar 

  • Nirasawa K, Hamada K, Naraki Y, et al. 2021 Development of A2G80 peptide-gene complex for targeted delivery to muscle cells. J. Control. Release 329 988–996

    Article  CAS  PubMed  Google Scholar 

  • Nóbrega C, Mendonça L, Matos CA, et al. 2020 Gene therapy strategies: gene augmentation; in A handbook of gene and cell therapy (Springer, Cham) pp 117–126

  • Nuijten M 2022 Pricing Zolgensma–the world’s most expensive drug. J. Mark. Access Heal. Policy 10 2022353

    Article  Google Scholar 

  • O’Keefe L 2020 FDA approves oral treatment for spinal muscular atrophy. FDA News Release. https://www.fda.gov/news-events/press-announcements/fda-approves-oral-treatment-spinal-muscular-atrophy

  • Ogbonmide T, Rathore R, Rangrej SB, et al. 2023 Gene therapy for spinal muscular atrophy (SMA): A review of current challenges and safety considerations for Onasemnogene Abeparvovec (Zolgensma). Cureus 15 e36197

  • Ousterout DG, Kabadi AM, Thakore PI, et al. 2015 Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol. Ther. 23 523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ousterout DG, Perez-Pinera P, Thakore PI, et al. 2013 Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol. Ther. 21 1718–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou I, Owen JS, and Yáñez‐Muñoz RJ 2023 Clinical applications of gene therapy for rare diseases: A review. Int. J. Exp. Pathol. 104 154–176

  • Park S-Y, Kim K-H, Kim S, et al. 2019 BMP-2 gene delivery-based bone regeneration in dentistry. Pharmaceutics 11 393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippidis A 2022a Food and drug administration lifts clinical hold on pfizer duchenne muscular dystrophy gene therapy linked to patient death. Hum. Gene Ther. 33 573–576

    Article  CAS  PubMed  Google Scholar 

  • Philippidis A 2022b Brother of cure rare disease CEO dies in trial of Duchenne muscular dystrophy therapy. Hum. Gene Ther. 33 1224–1227

    Article  CAS  PubMed  Google Scholar 

  • Ramos J and Chamberlain JS 2015 Gene therapy for Duchenne muscular dystrophy. Expert Opin. Orphan Drugs 3 1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao V, Byrne B, Shieh P, et al. 2021 Clinical trial highlights: O. 2 ignite DMD Phase I/II ascending dose study of SGT-001 microdystrophin gene therapy for DMD: 1.5-year functional outcomes update. Neuromuscul. Disord. 31 S47

  • Russell S, Bennett J, Wellman JA, et al. 2017 Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390 849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder S, Leadley RM, Armstrong N, et al. 2017 The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: An evidence review. Orphanet J. Rare Dis. 12 1–21

    Article  Google Scholar 

  • Sasaki E, Hayashi Y, Kimura Y, et al. 2021 Alpha-dystroglycan binding peptide A2G80-modified stealth liposomes as a muscle-targeting carrier for Duchenne muscular dystrophy. J. Control. Release 329 1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Shahryari A, Saghaeian Jazi M, Mohammadi S, et al. 2019 Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 10 868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shorrock HK, Gillingwater TH and Groen EJN 2018 Overview of current drugs and molecules in development for spinal muscular atrophy therapy. Drugs 78 293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirsi SR, Schray RC, Wheatley MA, et al. 2009 Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly (ethylene imine)-poly (ethylene glycol) copolymers complexed to oligonucleotides. J. Nanobiotechnol. 7 1–12

    Article  Google Scholar 

  • Sleboda DA, Stover KK and Roberts TJ 2020 Diversity of extracellular matrix morphology in vertebrate skeletal muscle. J. Morphol. 281 160–169

    Article  PubMed  Google Scholar 

  • Smalley E 2017 First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 35 998–1000

    Article  CAS  PubMed  Google Scholar 

  • Stamatatos L, Leventis R, Zuckermann MJ, et al. 1988 Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 27 3917–3925

    Article  CAS  PubMed  Google Scholar 

  • Stylianopoulos T, Poh M-Z, Insin N, et al. 2010 Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99 1342–1349

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Suzuki N, Hozumi K, Urushibata S, et al. 2010 Identification of α-dystroglycan binding sequences in the laminin α2 chain LG4–5 module. Matrix Biol. 29 143–151

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mori-Yoshimura M, Katsuno M, et al. 2023 Phase II/III study of aceneuramic acid administration for GNE myopathy in Japan. J. Neuromuscul. Dis. 10 555–566

  • Tabebordbar M, Lagerborg KA, Stanton A, et al. 2021 Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184 4919–4938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Clemens PR and Hoffman EP 2021 Exon-skipping in Duchenne muscular dystrophy. J. Neuromuscul. Dis. 8 S343–S358

    Article  PubMed  PubMed Central  Google Scholar 

  • Tal-Goldberg T, Lorain S and Mitrani-Rosenbaum S 2014 Correction of the Middle Eastern M712T mutation causing GNE myopathy by trans-splicing. Neuromol. Med. 16 322–331

    Article  CAS  Google Scholar 

  • Trivedi RA and Dickson G 1995 Liposome‐mediated gene transfer into normal and dystrophin‐deficient mouse myoblasts. J. Neurochem. 64 2230–2238

  • Tsoumpra MK, Fukumoto S, Matsumoto T, et al. 2019 Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. eBioMedicine 45 630–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Turjeman K, Yanay N, Elbaz M, et al. 2019 Liposomal steroid nano-drug is superior to steroids as-is in mdx mouse model of Duchenne muscular dystrophy. Nanomed. Nanotechnol. Biol. Med. 16 34–44

    Article  CAS  Google Scholar 

  • Verhaart IEC, Robertson A, Wilson IJ, et al. 2017 Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy–a literature review. Orphanet J. Rare Dis. 12 1–15

    Article  Google Scholar 

  • Vulin A, Barthélémy I, Goyenvalle A, et al. 2012 Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol. Ther. 20 2120–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahane A, Waghmode A, Kapphahn A, et al. 2020 Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 25

  • Wang M, Tucker JD, Lu P, et al. 2012 Tris [2-(acryloyloxy) ethyl] isocyanurate cross-linked low-molecular-weight polyethylenimine as gene delivery carriers in cell culture and dystrophic mdx mice. Bioconjug. Chem. 23 837–845

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang R, Tang L, et al. 2022 Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics 14 512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicklund MP and Kissel JT 2014 The limb-girdle muscular dystrophies. Neurol. Clin. 32 729–749

    Article  PubMed  Google Scholar 

  • Williams JH, Schray RC, Sirsi SR, et al. 2008 Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice. BMC Biotechnol. 8 1–13

    Article  Google Scholar 

  • Wu GY and Wu CH 1987 Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262 4429–4432

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Tomeh MA, Ye S, et al. 2022 Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Int. J. Pharm. 622 121857

    Article  CAS  PubMed  Google Scholar 

  • Yhee JY, Yoon HY, Kim H, et al. 2017 The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts. Int. J. Nanomedicine 12 6089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Moulton HM, Betts C, et al. 2009 A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum. Mol. Genet. 18 4405–4414

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Moulton HM, Betts C, et al. 2010 Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Mol. Ther. 18 1822–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Saleh AF, Betts C, et al. 2011 Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther. 19 1295–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukihara M, Ito K, Tanoue O, et al. 2011 Effective drug delivery system for duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity. Biol. Pharm. Bull. 34 712–716

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Wang X, Xie R, et al. 2023 Guanidinium-rich lipopeptide-based nanoparticle enables efficient gene editing in skeletal muscles. ACS Appl. Mater. Interfaces 15 10464–10476

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Wu F, Mosenson J, et al. 2017 CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol. Ther. Acids 7 31–41

    Article  Google Scholar 

  • Zor F, Selek FN, Orlando G, et al. 2019 Biocompatibility in regenerative nanomedicine. Nanomedicine 14 2763–2775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Indian Council of Medical Research (ICMR) for funding (GAP0246), the Council of Scientific & Industrial Research (CSIR), for the fellowship to DR, and the CSIR–Institute of Genomics and Integrative Biology for support. Figures were drawn using Canva (www.canva.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munia Ganguli.

Additional information

Corresponding editor: Rakesh K Mishra

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, D., Ganguli, M. Non-viral delivery of nucleic acid for treatment of rare diseases of the muscle. J Biosci 49, 27 (2024). https://doi.org/10.1007/s12038-023-00411-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00411-w

Keywords

Navigation