Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 16, 2024

A plant cyclic nonapeptide of orbitide type: an electron density study

  • Peter Luger EMAIL logo , Birger Dittrich EMAIL logo and Heinz-Jürgen Schmidt

Abstract

The electron density distribution (EDD) of a plant cyclic nonapeptide of orbitide type was studied. Crystal X-ray diffraction data was obtained from the Cambridge Structural Database (CSD) and refitted using scattering factors of the invariom library, thereby providing aspherical electron density. Bond topological, atomic properties and molecular surfaces (electrostatic potential and Hirshfeld surfaces) were derived. The partial double bond character of the peptide bond was confirmed by the ellipticity ε = 0.25. For eight N–H⋯O hydrogen bonds, atomic charges of contributing atoms differ depending on the type of the accepting oxygen atom. Atomic charge differences between negative main and positive side chains of this nonapeptide result in characteristic features of the electrostatic potential, which shows a positive isosurface around the molecule leading to repulsive interactions in the solid state structure. Weak intermolecular interactions are indicated by insignificant ED concentrations on the Hirshfeld surface except for weak signals at sites of intermolecular N–H⋯O and C–H⋯O hydrogen bonds.


Corresponding authors: Peter Luger, Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 36a, D-14195 Berlin, Germany, E-mail: ; and Birger Dittrich, Mathematisch-Naturwissenschaftliche Fakultät, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., Hassabisrio, D. Nature 2021, 596, 583–589; https://doi.org/10.1038/s41586-021-03819-2.Search in Google Scholar PubMed PubMed Central

2. Farías-Ricoa, J. A., Selina, F. R., Myronidia, I., Frühauf, M., von Heijne, G. Proc. Natl. Acad. Sci. U.S.A. 2023, 115, E9280–E9287.Search in Google Scholar

3. Maruyama, Y., Mitsutake, A. ACS Omega 2023. https://doi.org/10.1021/acsomega.3c05809.Search in Google Scholar PubMed PubMed Central

4. Purdy, S. K., Spasyuk, D., Chitanda, J. M., Reaney, M. J. T. IUCr Data 2020, 5, x200318−x200371.10.1107/S2414314620003181Search in Google Scholar PubMed PubMed Central

5. Fisher, M. F., Payne, C. D., Rosengren, J., Mylne, J. S. J. Nat. Prod. 2019, 82, 2152–2158; https://doi.org/10.1021/acs.jnatprod.9b00111.Search in Google Scholar PubMed

6. Ramalho, S. D., Wang, C. K., King, G. J., Byriel, K. A., Huang, Y.-H., Bolzani, V. S., Craig, D. J. J. Nat. Prod. 2018, 81, 2436–2445; https://doi.org/10.1021/acs.jnatprod.8b00447.Search in Google Scholar PubMed

7. Daly, N. L., Wilson, D. T. Biochem. Soc. Trans. 2021, 49, 1279–1285; https://doi.org/10.1042/bst20200881.Search in Google Scholar PubMed PubMed Central

8. Shin, Y. Y., Song, Z., Jadhav, P. D., Reaney, M. J. T. Trends Food Sci. Technol. 2019, 93, 197–211.10.1016/j.tifs.2019.09.007Search in Google Scholar

9. Allen, H. Acta Crystallogr. 2002, B58, 380–388.10.1107/S0108768102003890Search in Google Scholar PubMed

10. Groom, C. R., Bruno, I. J., Lightfood, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179.10.1107/S2052520616003954Search in Google Scholar PubMed PubMed Central

11. Dittrich, B., Koritsanszky, T., Luger, P. Angew. Chem. Int. Ed. 2004, 43, 2718–2721; https://doi.org/10.1002/anie.200353596.Search in Google Scholar PubMed

12. Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T., Holstein, J. J. Acta Crystallogr. 2013, B69, 91–104.10.1107/S0108768113002280Search in Google Scholar

13. Di Blasio, B., Rossi, F., Benedetti, E., Pavone, V., Pedone, C., Temussi, P. A., Zanotti, G., Tancredi, T. J. Amer. Chem. Soc. 1989, 111, 9089–9098; https://doi.org/10.1021/ja00207a015.Search in Google Scholar

14. Matsumoto, T., Shishido, A., Morita, H., Itokawa, H., Takeda, K. Tetrahedron 2002, 58, 5135–5140; https://doi.org/10.1016/s0040-4020(02)00476-3.Search in Google Scholar

15. Quail, J. W., Shen, J., Reaney, M. J. T., Sammynaiken, R. Acta Crystallogr. 2009, E65, o1913–o1914.10.1107/S1600536809026841Search in Google Scholar

16. Chitanda, J. M., Zhu, J., Mausberg, P., Burnett, P.-G. G., Reaney, M. J. T. IUCr Data 2016, 1, x161706–x161726; https://doi.org/10.1107/s2414314616017065.Search in Google Scholar

17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

18. Luger, P., Dittrich, B. Z. Naturforsch. 2019, 74b, 783–789.10.1515/znb-2019-0154Search in Google Scholar

19. Spek, A. L. Acta Crystallogr. 2009, D65, 148–155.10.1107/S090744490804362XSearch in Google Scholar

20. Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T., Koritsánszky, T. XD2006 – a computer program for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors, University of Buffalo: Buffalo, NY (USA); University of Milano: Milano (Italy); University of Glasgow: Glasgow, Scotland (U.K.); CNRISTM: Milano (Italy); Middle Tennessee State University: Murfreesboro, TN (USA), 2006.Search in Google Scholar

21. Bader, R. F. W. Atoms in Molecules – A Quantum Theory; Clarendon Press: Oxford, 1994.Search in Google Scholar

22. Volkov, A., Gatti, C., Abramov, Y., Coppens, P. Acta Crystallogr. 2000, A56, 252–258.10.1107/S0108767300001628Search in Google Scholar

23. McKinnon, J. J., Mitchell, A. S., Spackman, M. A. Chem. Eur. J. 1998, 4, 2136–2141; https://doi.org/10.1002/(sici)1521-3765(19981102)4:11<2136::aid-chem2136>3.0.co;2-g.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar

24. Spackman, M. A., McKinnon, J. J., Jayatilaka, D. CrystEngComm 2008, 10, 377–388; https://doi.org/10.1039/b715227b.Search in Google Scholar

25. Volkov, A., King, H. F., Coppens, P., Farrugia, L. J. Acta Crystallogr. 2006, A62, 400–408.10.1107/S0108767306026298Search in Google Scholar PubMed

26. Hübschle, C. B., Luger, P. J. Appl. Crystallogr. 2006, 39, 901–904; https://doi.org/10.1107/s0021889806041859.Search in Google Scholar

27. Johnas, S. K. J., Dittrich, B., Meents, A., Messerschmidt, M., Weckert, E. F. Acta Crystallogr. 2009, D65, 284−293.10.1107/S0907444908040602Search in Google Scholar PubMed

28. Luger, P., Dittrich, B. Z. Naturforsch. 2021, 76b, 91–95.Search in Google Scholar

29. Hübschle, C. B., Luger, P., Dittrich, B. J. Appl. Crystallogr. 2007, 40, 623–627; https://doi.org/10.1107/s0021889807016524.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0105).


Received: 2023-12-06
Accepted: 2024-01-08
Published Online: 2024-02-16
Published in Print: 2024-02-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0105/html
Scroll to top button