Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical and translational attributes of immune-related adverse events

Abstract

With immune checkpoint inhibitors (ICIs) becoming the mainstay of treatment for many cancers, managing their immune-related adverse events (irAEs) has become an important part of oncological care. This Review covers the clinical presentation of irAEs and crucial aspects of reversibility, fatality and long-term sequelae, with special attention to irAEs in specific patient populations, such as those with autoimmune diseases. In addition, the genetic basis of irAEs, along with cellular and humoral responses to ICI therapy, are discussed. Detrimental effects of empirically used high-dose steroids and second-line immunosuppression, including impaired ICI effectiveness, call for more tailored irAE-treatment strategies. We discuss open therapeutic challenges and propose potential avenues to accelerate personalized management strategies and optimize outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors contributing to the emergence and burden of irAEs.
Fig. 2: Spectrum and dynamics of irAEs.
Fig. 3: Immunological mechanisms of irAEs.

Similar content being viewed by others

References

  1. Haslam, A., Gill, J. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs. JAMA Netw. Open 3, e200423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet 399, 1718–1729 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Cascone, T. et al. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial. Nat. Med. 29, 593–604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scott, E. C. et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov. 22, 625–640 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, Y. et al. Coverage evaluation of CTCAE for capturing the immune-related adverse events leveraging text mining technologies. AMIA Jt Summits Transl. Sci. Proc. 2019, 771–778 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Naidoo, J. et al. Society for Immunotherapy of Cancer (SITC) consensus definitions for immune checkpoint inhibitor-associated immune-related adverse events (irAEs) terminology. J. Immunother. Cancer 11, e006398 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hsiehchen, D., Watters, M. K., Lu, R., Xie, Y. & Gerber, D. E. Variation in the assessment of immune-related adverse event occurrence, grade, and timing in patients receiving immune checkpoint inhibitors. JAMA Netw. Open 2, e1911519 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gault, A. et al. Cutaneous immune-related adverse events in patients with melanoma treated with checkpoint inhibitors. Br. J. Dermatol. 185, 263–271 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wolchok, J. D. et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J. Clin. Oncol. 40, 127–137 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Tarhini, A. A. et al. Phase III study of adjuvant ipilimumab (3 or 10 mg/kg) versus high-dose interferon alfa-2b for resected high-risk melanoma: North American Intergroup E1609. J. Clin. Oncol. 38, 567–575 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Lebbé, C. et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J. Clin. Oncol. 37, 867–875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Versluis, J. M., Long, G. V. & Blank, C. U. Learning from clinical trials of neoadjuvant checkpoint blockade. Nat. Med. 26, 475–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Verheijden, R. J. et al. Lower risk of severe checkpoint inhibitor toxicity in more advanced disease. ESMO Open 5, e000945 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Rozeman, E. A. et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. Nat. Med. 27, 256–263 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reijers, I. L. M. et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. Nat. Med. 28, 1178–1188 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Eggermont, A. M. M. et al. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 trial. J. Clin. Oncol. 38, 3925–3936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel, S. P. et al. Neoadjuvant–adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amaria, R. N. et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 611, 155–160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, N. et al. Influence of melanoma type on incidence and downstream implications of cutaneous immune-related adverse events in the setting of immune checkpoint inhibitor therapy. J. Am. Acad. Dermatol. 88, 1308–1316 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castaneda, C. A. et al. Tumor infiltrating lymphocytes in acral lentiginous melanoma: a study of a large cohort of cases from Latin America. Clin. Transl. Oncol. 19, 1478–1488 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Shankar, B. et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer. JAMA Oncol. 6, 1952–1956 (2020).

    Article  PubMed  Google Scholar 

  27. Kichenadasse, G. et al. Multiorgan immune-related adverse events during treatment with atezolizumab. J. Natl Compr. Canc. Netw. 18, 1191–1199 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Laparra, A. et al. Multiple immune-related toxicities in cancer patients treated with anti-programmed cell death protein 1 immunotherapies: a new surrogate marker for clinical trials? Ann. Oncol. 32, 936–937 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Abu-Sbeih, H. et al. The impact of immune checkpoint inhibitor-related adverse events and their immunosuppressive treatment on patients’ outcomes. J. Immunother. Precis. Oncol. 1, 7–18 (2018).

    Article  Google Scholar 

  30. Li, Y., Pond, G. R. & McWhirter, E. Multisystem immune-related adverse events from dual agent immunotherapy use. J. Clin. Oncol. 41, 2635 (2023).

    Article  Google Scholar 

  31. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Tang, S.-Q. et al. The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: a pooled analysis of 23 clinical trials and 8,436 patients. Cancer Res. Treat. 53, 339–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ascierto, P. A. et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB–C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 1465–1477 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Owen, C. N. et al. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma. Ann. Oncol. 32, 917–925 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Robert, C. et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: a landmark analysis in patients with advanced melanoma. Eur. J. Cancer 144, 182–191 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Weiss, S. A. & Kluger, H. CheckMate-067: raising the bar for the next decade in oncology. J. Clin. Oncol. 40, 111–113 (2022).

    Article  PubMed  Google Scholar 

  37. Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patrinely, J. R. et al. Chronic immune-related adverse events following adjuvant anti-PD-1 therapy for high-risk resected melanoma. JAMA Oncol. 7, 744–748 (2021).

    Article  PubMed  Google Scholar 

  39. Goodman, R. S. et al. Long-term outcomes of chronic immune-related adverse events from adjuvant anti-PD-1 therapy for high-risk resected melanoma. J. Clin. Oncol. 41, 9591 (2023).

    Article  Google Scholar 

  40. Min, L. et al. Systemic high-dose corticosteroid treatment does not improve the outcome of ipilimumab-related hypophysitis: a retrospective cohort study. Clin. Cancer Res. 21, 749–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Schulz, T. U. et al. Persistent immune-related adverse events after cessation of checkpoint inhibitor therapy: prevalence and impact on patients’ health-related quality of life. Eur. J. Cancer 176, 88–99 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Ruste, V. et al. The determinants of very severe immune-related adverse events associated with immune checkpoint inhibitors: a prospective study of the French REISAMIC registry. Eur. J. Cancer 158, 217–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laenens, D. et al. Incidence of cardiovascular events in patients treated with immune checkpoint inhibitors. J. Clin. Oncol. 40, 3430–3438 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Newman, J. L. & Stone, J. R. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis. Cardiovasc. Pathol. 43, 107148 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Suero-Abreu, G. A., Zanni, M. V. & Neilan, T. G. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 4, 598–615 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Poels, K. et al. Immune checkpoint inhibitor therapy aggravates T cell-driven plaque inflammation in atherosclerosis. JACC CardioOncol. 2, 599–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Garutti, M., Lambertini, M. & Puglisi, F. Checkpoint inhibitors, fertility, pregnancy, and sexual life: a systematic review. ESMO Open 6, 100276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scovell, J. M. et al. Association of impaired spermatogenesis with the use of immune checkpoint inhibitors in patients with metastatic melanoma. JAMA Oncol. 6, 1297–1299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Salzmann, M. et al. Male fertility during and after immune checkpoint inhibitor therapy: a cross-sectional pilot study. Eur. J. Cancer 152, 41–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Winship, A. L. et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nat. Cancer 3, 1–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018).

    Article  PubMed  Google Scholar 

  55. Bai, X. et al. Mapping endocrine toxicity spectrum of immune checkpoint inhibitors: a disproportionality analysis using the WHO adverse drug reaction database, VigiBase. Endocrine 69, 670–681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jessel, S. et al. Immune checkpoint inhibitor-induced hypophysitis and patterns of loss of pituitary function. Front. Oncol. 12, 836859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nguyen, H. et al. Immune checkpoint inhibitor related hypophysitis: diagnostic criteria and recovery patterns. Endocr. Relat. Cancer 28, 419–431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keogh, R. J. et al. A prospective observational study investigating the impact of immune checkpoint inhibitors for cancer on fertility in males and females of child-bearing age (immuno-fertility). J. Clin. Oncol. 41, TPS2679 (2023).

    Article  Google Scholar 

  59. Cha, E. et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl. Med. 6, 238ra70 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gangaev, A. et al. Differential effects of PD-1 and CTLA-4 blockade on the melanoma-reactive CD8 T cell response. Proc. Natl Acad. Sci. USA 118, e2102849118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 6, 254ra128 (2014).

    Article  PubMed  Google Scholar 

  62. Jiao, S. et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179, 1177–1190 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wei, S. C. et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc. Natl Acad. Sci. USA 116, 22699–22709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huuhtanen, J. et al. Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma. J. Clin. Invest. 133, e164809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers—response. Clin. Cancer Res. 25, 3469–3470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blomberg, O. S. et al. Neoadjuvant immune checkpoint blockade triggers persistent and systemic Treg activation which blunts therapeutic efficacy against metastatic spread of breast tumors. Oncoimmunology 12, 2201147 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Schwab, C. et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J. Allergy Clin. Immunol. 142, 1932–1946 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ogishi, M. et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat. Med. 27, 1646–1654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bins, S. et al. Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients. Br. J. Cancer 118, 1296–1301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weidhaas, J. et al. Germline biomarkers predict toxicity to anti-PD1/PDL1 checkpoint therapy. J. Immunother. Cancer 10, e003625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Khan, Z. et al. Polygenic risk for skin autoimmunity impacts immune checkpoint blockade in bladder cancer. Proc. Natl Acad. Sci. USA 117, 12288–12294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hasan Ali, O. et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 107, 8–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Akturk, H. K. et al. Immune checkpoint inhibitor-induced type 1 diabetes: a systematic review and meta-analysis. Diabet. Med. 36, 1075–1081 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abed, A. et al. Human leucocyte antigen genotype association with the development of immune-related adverse events in patients with non-small cell lung cancer treated with single agent immunotherapy. Eur. J. Cancer 172, 98–106 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Marschner, D. et al. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight 5, e132334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Groha, S. et al. Germline variants associated with toxicity to immune checkpoint blockade. Nat. Med. 28, 2584–2591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Taylor, C. A. et al. IL7 genetic variation and toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med. 28, 2592–2600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    Article  PubMed  Google Scholar 

  86. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Läubli, H. et al. The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. Oncoimmunology 7, e1386362 (2018).

    Article  PubMed  Google Scholar 

  88. Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hutchinson, J. A. et al. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat. Commun. 12, 1439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bomze, D., Hasan Ali, O., Bate, A. & Flatz, L. Association between immune-related adverse events during anti-PD-1 therapy and tumor mutational burden. JAMA Oncol. 5, 1633–1635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Simpson, R. C., Shanahan, E. R., Scolyer, R. A. & Long, G. V. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 20, 697–715 (2023).

    Article  PubMed  Google Scholar 

  93. Kerepesi, C., Bakacs, T., Moss, R. W., Slavin, S. & Anderson, C. C. Significant association between tumor mutational burden and immune-related adverse events during immune checkpoint inhibition therapies. Cancer Immunol. Immunother. 69, 683–687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Berner, F. et al. Autoreactive napsin A-specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Sci. Immunol. 7, eabn9644 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Won, T. et al. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 41, 111611 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Hu, Z. I. et al. Immune checkpoint inhibitors unleash pathogenic immune responses against the microbiota. Proc. Natl Acad. Sci. USA 119, e2200348119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. Nat. Cancer 3, 143–155 (2022).

    Article  PubMed  Google Scholar 

  100. Subudhi, S. K. et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc. Natl Acad. Sci. USA 113, 11919–11924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Robert, L. et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin. Cancer Res. 20, 2424–2432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oh, D. Y. et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 77, 1322–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Lozano, A. X. et al. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med. 28, 353–362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jing, Y. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 11, 4946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hommes, J. W., Verheijden, R. J., Suijkerbuijk, K. P. M. & Hamann, D. Biomarkers of checkpoint inhibitor induced immune-related adverse events—a comprehensive review. Front. Oncol. 10, 585311 (2020).

    Article  PubMed  Google Scholar 

  106. Earland, N. et al. CD4 T cells and toxicity from immune checkpoint blockade. Immunol. Rev. 318, 96–109 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. van Eijs, M. J. M. et al. Toxicity-specific peripheral blood T and B cell dynamics in anti-PD-1 and combined immune checkpoint inhibition. Cancer Immunol. Immunother. 72, 4049–4064 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kim, K. H. et al. The first-week proliferative response of peripheral blood PD-1+CD8+ T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin. Cancer Res. 25, 2144–2154 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Nuñez, N. G. et al. Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors. Med 4, 113–129 (2023).

    Article  PubMed  Google Scholar 

  110. Kim, K. H. et al. Immune-related adverse events are clustered into distinct subtypes by T-cell profiling before and early after anti-PD-1 treatment. Oncoimmunology 9, 1722023 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bukhari, S. et al. Single-cell RNA sequencing reveals distinct T cell populations in immune-related adverse events of checkpoint inhibitors. Cell Rep. Med. 4, 100868 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Damo, M. et al. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens. Nature 619, 151–159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weisberg, S. P. et al. Tissue-resident memory T cells mediate immune homeostasis in the human pancreas through the PD-1/PD-L1 pathway. Cell Rep. 29, 3916–3932 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sasson, S. C. et al. Interferon-γ-producing CD8+ tissue resident memory T cells are a targetable hallmark of immune checkpoint inhibitor-colitis. Gastroenterology 161, 1229–1244 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Thomas, M. et al. Altered interactions between circulating and tissue-resident CD8 T cells with the colonic mucosa define colitis associated with immune checkpoint inhibitors. Preprint at bioRxiv https://doi.org/10.1101/2021.09.17.460868 (2021).

    Article  Google Scholar 

  119. van Eijs, M. J. M. et al. Highly multiplexed spatial analysis identifies tissue-resident memory T cells as drivers of ulcerative and immune checkpoint inhibitor colitis. iScience 26, 107891 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Reschke, R. et al. Checkpoint blockade-induced dermatitis and colitis are dominated by tissue-resident memory T cells and TH1/TC1 cytokines. Cancer Immunol. Res. 10, 1167–1174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lechner, M. G. et al. Clonally expanded, thyrotoxic effector CD8+ T cells driven by IL-21 contribute to checkpoint inhibitor thyroiditis. Sci. Transl. Med. 15, eadg0675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Franken, A. et al. Single-cell transcriptomics identifies pathogenic T-helper 17.1 cells and pro-inflammatory monocytes in immune checkpoint inhibitor-related pneumonitis. J. Immunother. Cancer 10, e005323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Suresh, K. et al. The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis. J. Clin. Invest. 129, 4305–4315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 13, 1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, R. et al. Clonally expanded CD38hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis. Sci. Immunol. 8, eadd1591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chang, M. H. et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep. 37, 109902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Flores-Chávez, A. et al. Using autoantibodies to diagnose systemic autoimmune diseases triggered by immune checkpoint inhibitors: a clinical perspective. Crit. Rev. Immunol. 42, 21–36 (2022).

    Article  PubMed  Google Scholar 

  128. Johannet, P. et al. Baseline serum autoantibody signatures predict recurrence and toxicity in melanoma patients receiving adjuvant immune checkpoint blockade. Clin. Cancer Res. 28, 4121–4130 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Velasco, R. et al. Encephalitis induced by immune checkpoint inhibitors: a systematic review. JAMA Neurol. 78, 864–873 (2021).

    Article  PubMed  Google Scholar 

  130. Ghosh, N., Chan, K. K., Jivanelli, B. & Bass, A. R. Autoantibodies in patients with immune-related adverse events from checkpoint inhibitors: a systematic literature review. J. Clin. Rheumatol. 28, e498–e505 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Patel, A. J. et al. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat. Commun. 13, 3148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Singh, S. et al. Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis. JCI Insight https://doi.org/10.1172/jci.insight.165108 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tsukamoto, H. et al. Aging-associated and CD4 T-cell-dependent ectopic CXCL13 activation predisposes to anti-PD-1 therapy-induced adverse events. Proc. Natl Acad. Sci. USA 119, e2205378119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, J., Du, Z., Fu, J. & Yi, X. Blood cell counts can predict adverse events of immune checkpoint inhibitors: a systematic review and meta-analysis. Front. Immunol. 14, 1117447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Niemantsverdriet, M. S. A. et al. Added diagnostic value of routinely measured hematology variables in diagnosing immune checkpoint inhibitor mediated toxicity in the emergency department. Cancer Med. 12, 12462–12469 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Scanvion, Q. et al. Moderate-to-severe eosinophilia induced by treatment with immune checkpoint inhibitors: 37 cases from a national reference center for hypereosinophilic syndromes and the French pharmacovigilance database. Oncoimmunology 9, 1722022 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Blomberg, O. S. et al. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer. Cancer Cell 41, 106–123 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Zheng, X. et al. CTLA4 blockade promotes vessel normalization in breast tumors via the accumulation of eosinophils. Int. J. Cancer 146, 1730–1740 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Sung, C. et al. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. Nat. Cancer 4, 844–859 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230ra45 (2014).

    Article  PubMed  Google Scholar 

  144. Haanen, J. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1217–1238 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Brahmer, J. R. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 9, e002435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schneider, B. J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 39, 4073–4126 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Ma, C. et al. Recommendations for standardizing biopsy acquisition and histological assessment of immune checkpoint inhibitor-associated colitis. J. Immunother. Cancer 10, e004560 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hughes, M. S. et al. Budesonide treatment for microscopic colitis from immune checkpoint inhibitors. J. Immunother. Cancer 7, 292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zou, F. et al. Efficacy and safety of vedolizumab and infliximab treatment for immune-mediated diarrhea and colitis in patients with cancer: a two-center observational study. J. Immunother. Cancer 9, e003277 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Liu, D. et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 9, 30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bass, A. R. et al. Comparative safety and effectiveness of TNF inhibitors, IL6 inhibitors and methotrexate for the treatment of immune checkpoint inhibitor-associated arthritis. Ann. Rheum. Dis. 82, 920–926 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Mann, J. E. et al. scRNA-seq defines dynamic T-cell subsets in longitudinal colon and peripheral blood samples in immune checkpoint inhibitor-induced colitis. J. Immunother. Cancer 11, e007358 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Dall’Olio, F. G. et al. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: a meta-analysis. Immunotherapy 13, 257–270 (2021).

    Article  PubMed  Google Scholar 

  154. Hussaini, S. et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors — a systematic review and meta-analysis. Cancer Treat. Rev. 92, 102134 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Verheijden, R. J., van Eijs, M. J. M., May, A. M., van Wijk, F. & Suijkerbuijk, K. P. M. Immunosuppression for immune-related adverse events during checkpoint inhibition: an intricate balance. NPJ Precis. Oncol. 7, 41 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Eggermont, A. M. M. et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 6, 519–527 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Walsh, M. J. et al. Blockade of innate inflammatory cytokines TNFα, IL-1β, or IL-6 overcomes virotherapy-induced cancer equilibrium to promote tumor regression. Immunother. Adv. 3, ltad011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 8, 2256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Montfort, A. et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27, 1037–1047 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Fa’ak, F. et al. Selective immune suppression using interleukin-6 receptor inhibitors for management of immune-related adverse events. J. Immunother. Cancer 11, e006814 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509–523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Verheijden, R. J. et al. Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1-treated patients in the Dutch Melanoma Treatment Registry. Clin. Cancer Res. 26, 2268–2274 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. van Not, O. J. et al. Association of immune-related adverse event management with survival in patients with advanced melanoma. JAMA Oncol. 8, 1794–1801 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. van der Kooij, M. K. et al. Safety and efficacy of checkpoint inhibition in patients with melanoma and preexisting autoimmune disease: a cohort study. Ann. Intern. Med. 174, 641–648 (2021).

    Article  PubMed  Google Scholar 

  166. Abu-Sbeih, H. et al. Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J. Clin. Oncol. 38, 576–583 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Leonardi, G. C. et al. Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J. Clin. Oncol. 36, 1905–1912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. McCarter, K. R. et al. Mortality and immune-related adverse events after immune checkpoint inhibitor initiation for cancer among patients with pre-existing rheumatoid arthritis: a retrospective, comparative, cohort study. Lancet Rheumatol. 5, e274–e283 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. de Glas, N. A. et al. Toxicity, response and survival in older patients with metastatic melanoma treated with checkpoint inhibitors. Cancers 13, 2826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Nebhan, C. A. et al. Clinical outcomes and toxic effects of single-agent immune checkpoint inhibitors among patients aged 80 years or older with cancer: a multicenter international cohort study. JAMA Oncol. 7, 1856–1861 (2021).

    Article  PubMed  Google Scholar 

  171. Bruijnen, C. P. et al. Frailty and checkpoint inhibitor toxicity in older patients with melanoma. Cancer 128, 2746–2752 (2022).

    Article  PubMed  Google Scholar 

  172. van der Kooij, M. K. et al. Age does matter in adolescents and young adults versus older adults with advanced melanoma; a national cohort study comparing tumor characteristics, treatment pattern, toxicity and response. Cancers 12, 2072 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wong, S. K. et al. Efficacy and safety of immune checkpoint inhibitors in young adults with metastatic melanoma. Eur. J. Cancer 181, 188–197 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Cluxton, C. & Naidoo, J. Prospective clinical trials to advance the study of immune checkpoint inhibitor toxicity. Curr. Oncol. 30, 6862–6871 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bolte, L. A. et al. Association of a Mediterranean diet with outcomes for patients treated with immune checkpoint blockade for advanced melanoma. JAMA Oncol. 9, 705–709 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Verheijden, R. J. et al. Physical activity and checkpoint inhibition: association with toxicity and survival. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djad245 (2023).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

All figures were created with https://www.biorender.com. Owing to space and reference limitations, we were unable to discuss and cite all interesting studies performed in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karijn P. M. Suijkerbuijk.

Ethics declarations

Competing interests

K.P.M.S. has advisory relationships with Bristol Myers Squibb, Novartis, MSD, Pierre Fabre and AbbVie and has received honoraria from Novartis, MSD and Sairopa and research funding from BMS, Philips and TigaTx, all paid to the institution. F.v.W. has received advisory and/or speaker fees from Takeda and Johnson & Johnson and research funding from BMS, Takeda, Sanofi, Pfizer, Galapagos and Leo Pharma. A.M.M.E. has received honoraria for advisory relationships from Agenus, Boehringer Ingelheim, BioInvent, BioNTech, Brenus, CatalYm, Epics, GenOway, IO Biotech, IQVIA, ISA Pharmaceuticals, Merck & Co/MSD, Oncimmune, Pfizer, Pierre Fabre, Sairopa, Sellas, Scorpion, SkylineDX, TigaTx and Trained Therapeutics and moreover speaker fees from BMS and MSD and has equity in IO Biotech, Sairopa and SkylineDX. No potential conflicts of interest were disclosed by M.J.M.v.E.

Peer review information

Nature Cancer thanks Michael Dougan and Michael Postow for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suijkerbuijk, K.P.M., van Eijs, M.J.M., van Wijk, F. et al. Clinical and translational attributes of immune-related adverse events. Nat Cancer 5, 557–571 (2024). https://doi.org/10.1038/s43018-024-00730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-024-00730-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer