Skip to main content
Log in

Machine-learning approach for prediction and analysis of quantitative and qualitative parameters of binary polar liquids

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Quantitative and qualitative parameters are essential for comprehending the intermolecular interactions in binary polar liquids. In this work, complex permittivity and excess dielectric constant of alcohol–water mixture is used for the quantitative and qualitative analysis, respectively. Aqueous solutions of methanol, ethanol, propanol and isopropyl alcohol are considered. The frequency dispersion of permittivity and the intricate structure of these liquids make the analysis a difficult task. A decision tree regression-based machine-learning model is proposed for the prediction of parameters. For quantitative analysis, the dataset is prepared by measuring the complex permittivity of the mixture using dielectric probe kit–N1501A of Keysight Technologies over a frequency range of 0.2–20 GHz at 25°C. For qualitative analysis, available standard equations are modified to calculate the excess dielectric constants in the specified frequency range. The proposed model requires only three input parameters—frequency, volume fraction of alcohol and static dielectric constant of alcohol to make the prediction. Performance comparison of the model with the measured values of complex permittivity shows minimum error. The analysis reveals the effect of the volume fraction of alcohol and frequency on complex permittivity and excess dielectric constant of the mixture. The proposed model is a novel and reliable prediction tool that can be used for both quantitative and qualitative analysis of alcohol–water mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Mehrotra S C, Kumbharkhane A and Chaudhari A 2017 Binary polar Liquids (Netherlands: Elsevier)

    Google Scholar 

  2. Gregory A P and Clarke R N 2006 IEEE Trans. Diel. Electr. Ins. 13 727

    Article  CAS  Google Scholar 

  3. Bao J Z, Swicord M L and Davis C C 1996 J. Chem. Physic. 104 4441

    Article  ADS  CAS  Google Scholar 

  4. Gregory A P, Clarke R N and Cox M G 2009 Meas. Sci. Technol. 20 75106

    Article  Google Scholar 

  5. Wei Y Z and Sridhar S 1989 Rev. Sci. Instrum. 60 3041

    Article  ADS  Google Scholar 

  6. San Millán Castillo R, Morgado E and Goya Esteban R 2020 IEEE Sens. J. 20 4120

    Article  ADS  Google Scholar 

  7. Pekel E 2020 Theor. Appl. Climato. 139 1111

    Article  ADS  Google Scholar 

  8. Javaid M F, Azam R and Riaz M R 2023 Innov. Infrastruct. Solut. 8 103

    Article  Google Scholar 

  9. Latif S D 2021 Environ. Sci. Pollut. Res. 28 65935

    Article  CAS  Google Scholar 

  10. Jumin E, Basaruddin F B, Yusoff Y B M, Latif S D and Ahmed A N 2021 Environ. Sci. Pollut. Res. 28 26571

    Article  Google Scholar 

  11. Genrikhov I E, Djukova E V and Zhuravlev V I 2017 Pattern Recognit. Image Anal. 27 1

    Article  Google Scholar 

  12. Kaushik V and Awasthi N 2023 AI Civ. Eng. 2 2

    Article  Google Scholar 

  13. Taser P Y, Onsal G and Ugurlu O 2022 Bull. Mater. Sci. 46 1

    Article  Google Scholar 

  14. Quinlan J R 1986 Mach. Learn. 1 81

    Google Scholar 

  15. Salim A, Memon M U, Jeong H and Lim S 2020 Sensors 20 4985

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Buckingham A D 1953 Aust. J. Chem. 6 93

    Article  CAS  Google Scholar 

  17. Cheng J, Peng Y, Li E, Yu C, Zhang Y, Gao Y et al 2022 Rev. Sci. Instrum. 93 104701

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Chmielewska A, Żurada M, Klimaszewski K and Bald A 2009 J. Chem. Eng. Data 54 801

    Article  CAS  Google Scholar 

  19. Sengwa R J, Sankhla S and Shinyashiki N 2008 J. Solut. Chem. 37 137

    Article  CAS  Google Scholar 

  20. Cardona J, Sweatman M B and Lue L 2018 J. Phys. Chem. 122 1505

    Article  CAS  Google Scholar 

  21. Navarkhele V V 2016 Int. J. Pharm. Pharm. Sci. 8 102

    Article  CAS  Google Scholar 

  22. Kanse K S, Chavan S D, Mali C S, Kumbharkhane A C and Mehrotra S C 2006 Indian J. Phys. 80 265

    CAS  Google Scholar 

  23. Mashimo S, Umehara T and Redlin H 1991 J. Chem. Phys. 95 6257

    Article  ADS  CAS  Google Scholar 

  24. Yang L J, Yang X Q, Huang K M, Shang H and Jia G Z 2010 J. Solution Chem. 39 473

    Article  CAS  Google Scholar 

  25. Ghorbanpour T, Gilani A G and Fallahi S 2018 J. Mol. Liq. 260 403

    Article  CAS  Google Scholar 

  26. Sato T and Buchner R 2005 J. Mol. Liq. 117 23

    Article  CAS  Google Scholar 

  27. Jukic I, Pozar M and Lovrincevic B 2020 Phys. Chem. Chem. Phys. 22 23856

    Article  CAS  PubMed  Google Scholar 

  28. Sudo S, Shinyashiki N, Kitsuki Y and Yagihara S 2002 J. Phys. Chem. A 106 458

    Article  CAS  Google Scholar 

  29. Sato T, Chiba A and Nozaki R 2002 J. Mol. Liq. 96 327

    Article  Google Scholar 

  30. Li T, Fan W, Sun J, Yu Y, Zhou X, Xie C et al 2020 J. Raman Spectrosc. 53 1551

    Article  ADS  Google Scholar 

  31. Vyshnavi V R and Malik A 2019 Int. J. Recent Res. Asp. 6 16

    Google Scholar 

Download references

Acknowledgement

We acknowledge the measurement facility provided by the Center for Research in Electromagnetics and Antennas (CREMA), Department of Electronics, Cochin University of Science and Technology, Kochi, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thushara Haridas Prasanna.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haridas Prasanna, T., Shanta, M. Machine-learning approach for prediction and analysis of quantitative and qualitative parameters of binary polar liquids. Bull Mater Sci 47, 37 (2024). https://doi.org/10.1007/s12034-023-03103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03103-1

Keywords

Navigation