Skip to main content
Log in

Efficient photodegradation of phenol in wastewater using ZnAl–Bi photocatalysts analysing the effect of Bi content on ZnAl LDH synthesized in one step

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The layered double hydroxide (LDH) zinc–aluminum (ZA) catalysts with different percentages of bismuth (6, 8, 10 and 12.5%) were synthesized using the chemical co-precipitation method at pH 10. The materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). Furthermore, the influence of bismuth content on the catalysts was evaluated in the photodegradation of phenol, studying its impact. X-ray diffraction confirmed the formation of hydrotalcite in the ZA solid, and the hydrotalcite phase was predominant in the catalysts with different bismuth content. The solid with 10% bismuth (ZABt-10) exhibited the highest capacity for phenol degradation, achieving a degradation of 97.31% and mineralization of 83.30% using these materials without activation or calcination processes. The photocatalytic mechanism involved in the photodegradation of phenol on the ZABt-10 material occurs via O2, h+ and OOH contributing 38, 34 and 25%, respectively, resulting in a 97% degradation of the phenol molecule. Furthermore, this material completely degrades the intermediate products (hydroquinone, benzoquinone and catechol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Ren S, Ramachandra T, Qian H, Nikolaos D, Lokesh K, Ceri H et al 2012 ACS Nano 6 6284

    Article  Google Scholar 

  2. Julio C R, Clara T F, Yanet P P, Francisco T, Pastora S H, Fernando M A et al 2020 J. Photochem. Photobiol. A 402 112816

    Article  Google Scholar 

  3. Julio C R, Francisco T, Clara T, Mónica V T, Ricardo G, Carlos S V et al 2023 J. Photochem. Photobiol. A 435 114285

    Article  Google Scholar 

  4. Francisco T, Julio C R, Clara T F, Raúl P H, Ricardo G, Carlos S V et al 2022 Catal. Today 394 376

    Google Scholar 

  5. Meng C, Xiaoqiang F, Han Y, Yuting L, Shijie S, Wen L et al 2021 Chem. Eng. J. 419 130050

    Article  Google Scholar 

  6. Balram S Y and Sudip D Y 2022 Inorg. Chem. Commun. 137 109203

    Article  Google Scholar 

  7. Longchao D, Baojun Q and Ming Z D 2007 Polym. Degrad. Stab. 92 497

    Article  Google Scholar 

  8. Stepanova L N, Belskaya O B, Vasilevich A, Gulyaeva T I, Leont’eva N, Serkova A, et al 2020 Catal. Today 357 638

    Article  CAS  Google Scholar 

  9. Becker M, Aline G, Fernando W, Sandro C and Sandro A 2011 Appl. Compos. Sci. Manuf. 42 196

    Article  Google Scholar 

  10. Francisco T, Julio C R, Clara T F, Ricardo G, Carlos S V, María F et al 2022 J. Photochem. Photobiol. A 423 113594

    Article  Google Scholar 

  11. Kaouther A, Frini Srasra N and Ezzeddine S 2016 Appl. Clay Sci. 119 229

    Article  Google Scholar 

  12. Edgardo M F, Arnaldo F J, Tatiana S, José M A and Maria R 2011 Catal. Today 171 290

    Article  Google Scholar 

  13. Jianye S, Mingzhe L, Xingqi F and Jianqian L 2012 J. Alloys Compd. 543 142

    Article  Google Scholar 

  14. Jing C, Xin L, Haili L, Shifu C and Xianliang F 2012 J. Hazard. Mater. 239 316

    Google Scholar 

  15. Tobón Z, Etcheverry S and Baran E 1997 J. Mater. Sci. Lett. 16 656

    Article  Google Scholar 

  16. Esthela R R, Norma G, Francisco T, Arturo B R, Julio C R, Clara T F et al 2020 Top. Catal. 63 546

    Article  Google Scholar 

  17. Raquel T, Vicente M, Vicente R, Isabel S and Jesuis S 2015 Appl. Clay Sci. 115 24

    Article  Google Scholar 

  18. Theo J, Leisel H and Ray L 2004 J. Raman Spectrosc. 35 967

    Article  Google Scholar 

  19. Clara T, Julio C R, Ricardo G, Francisco T, Raúl P H, Verónica T et al 2019 J. Chem. Technol. Biotechnol. 94 3428

    Article  Google Scholar 

  20. Khaled H and Ezzeddine S 2009 Appl. Clay Sci. 43 415

    Article  Google Scholar 

  21. Landers J, Gor G and Neimark A 2013 Colloids Surf. A: Physicochem. Eng. Asp. 437 3

    Article  CAS  Google Scholar 

  22. Kuixin C, Yuehui H and Shengming J 2016 Chemosphere 149 245

    Article  Google Scholar 

  23. Chen J, Zhan J and Li Q 2019 J. Environ. Chem. Eng. 7 103375

    Article  CAS  Google Scholar 

  24. Gareth W and Dermot O 2006 J. Mater. Chem. A 16 3065

    Article  Google Scholar 

  25. Dabrowska S, Migdalski J and Lewenstam A 2019 Sensors 19 1268

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272

    Article  CAS  ADS  Google Scholar 

  27. Xiaorong W, Pingxiao W, Zhujian H, Nengwu Z, Jinhua W, Li Ping et al 2014 Appl. Clay Sci. 95 95

    Article  Google Scholar 

  28. Beysim O and Gulin S 2015 J. Mol. Catal. A: Chem 398 65

    Article  Google Scholar 

  29. Getsemaní M, Mayra A L, Rosendo L, Francisco T, Rajesh A, Soo W et al 2016 Catal. Today 266 62

    Article  Google Scholar 

  30. Elena S, Niarchos M, Mitropoulos C, Myrjam M, Etienne V and Pegie C 2015 Catal. Today 252 120

    Article  Google Scholar 

  31. Gird C, Teodora C, Ioana N, María P and Ligia D 2015 Farmacia 63 247

    CAS  Google Scholar 

  32. Thiago H, Bárbara M, Renato F and Roberto G 2014 RSC Adv. 4 34674

    Article  Google Scholar 

  33. Sze-Mun L, Jin-Chung S and Abdul M 2010 Korean J. Chem. Eng. 27 1109

    Article  Google Scholar 

  34. Zeng X, Xiao X, Chen J and Wang H 2019 Appl. Catal. B 248 573

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Secretaría de Educación, Ciencia, Tecnología e Innovación (SECTEI) of Mexico City for the contribution of a scholarship for a postdoctoral stay at the Universitat de Barcelona for the development of this manuscript. The authors want to thank CONACYT for financial support granted through the project ‘Desarrollo de innovaciones tecnológicas para una agricultura mexicana libre de Agroinsumos tóxicos’ # 316022, SIP-IPN # 20212069. We thank CONACyT for financial support granted through the project A1-S-41124 ‘Estudio de parámetros modulantes de la selectividad en materiales fotocatalíticamente activos’, FOSEC-SEP 2017–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Castillo-Rodríguez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Rodríguez, J.C., Tzompantzi-Flores, C., Marco, P. et al. Efficient photodegradation of phenol in wastewater using ZnAl–Bi photocatalysts analysing the effect of Bi content on ZnAl LDH synthesized in one step. Bull Mater Sci 47, 35 (2024). https://doi.org/10.1007/s12034-023-03085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03085-0

Keywords

Navigation