Skip to main content
Log in

Effect of oxygen vacancies on dielectric property and reliability of anti-ferroelectric PLZT applicable to EV-MLCC

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A study on anti-ferroelectric (PbLa)(ZrTi)O3 (PLZT) for electric vehicles (EV) applicable to DC-link was conducted. Multilayer ceramic capacitors (MLCCs) for DC-link require high-electric field properties and reliability. Oxygen vacancies are a major cause affecting insulation properties and reliability. There are acceptors and donors as methods for controlling the mobility and concentration of oxygen vacancies. The mobility and concentration of oxygen vacancies were simultaneously controlled, rather than individually controlled. Mn4+ was selected as the acceptor and Dy3+ was selected as the donor. After fixing Mn4+ = 5.0 mol% to (Pb0.82La0.12)(Zr0.86Ti0.14)O3, insulation properties and reliability were evaluated according to Dy3+ = 5.0, 10.0, 15.0 and 20.0 mol%. A high sintered density was obtained at a temperature of 1200°C in a reduction atmosphere. When Mn4+ = 5.0 mol% and Dy3+ = 10.0 mol% were co-substituted into PLZT, a dielectric constant of about 1800 and a breakdown voltage of about 12 kV mm−1 were obtained. In the co-substituted PLZT, capacitance change and insulation degradation properties were greatly improved. Oxygen vacancy mobility and concentration control were effective in reliability properties. Thermally stimulated depolarization current (TSDC) was analysed to confirm the polarization of oxygen vacancies. TSDC increased with electric field and time. TSDC decreased in co-substituted PLZT compared to un-substituted PLZT. A factor affecting TSDC is the behaviour of oxygen vacancies. Based on the result, the oxygen vacancies are polarized and moved by the application of an electric field, resulting in degradation of insulating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Seok-Hyun Y, Mi-Yang K and Dong-Hun K 2020 J. Mater. Chem. C 8 9373

    Article  Google Scholar 

  2. Gang Y, Zhenxing Y, Zhilun C and Longtu L 2008 J. Appl. Phys. 104 074115

    Article  Google Scholar 

  3. Hiroshi H, Takayuki G, Koichiro M, Yoshiki I and Takaaki T 2022 J. Ceram. Soc. Jpn 12 913

    Google Scholar 

  4. Hiroshi K, Yasuyuki I, Koichiro M, Yoshiki I and Takaaki T 2022 J. Ceram. Soc. Jpn 12 920

    Google Scholar 

  5. Dong-Woo H and Young-Ho H 2009 J. Korean Ceram. Soc. 46 219

    Article  Google Scholar 

  6. Seok-Hyun Y, Jae-Sung P, Sang-Hyuk K and Doo-Young K 2013 Appl. Phys. Lett. 103 042901

    Article  ADS  Google Scholar 

  7. Xiangjun M, Ye Z, Jianye Z, Lipeng Z, Yong L and Xihong H 2022 J. Eur. Ceram. Soc. 42 6493

    Article  Google Scholar 

  8. Li Jinglei, Li Fei, Zhuo Xu and Zhang Shujun 2018 Adv. Mater. 30 1802155

    Article  Google Scholar 

  9. Zhongqiang H, Beihai M, Rachel E K and Uthamalingam B 2014 Appl. Phys. Lett. 104 263902

    Article  Google Scholar 

  10. Xihong H, Jiwei Z, Jinbao X and Xi Y 2007 Ferroelectrics 357 218

    Article  Google Scholar 

  11. Ioana Veronica C, Chingchang C, Chris M F, Jonathon E G, Jennifer Sue F, Jacob L J et al 2017 J. Eur. Ceram. Soc. 37 4631

    Article  Google Scholar 

  12. Zhongqiang H, Beihai M, Shanshan L, Manoj N and Uthamalingam B 2014 Ceram. Inter. 40 557

    Article  Google Scholar 

  13. Ioana Veronica C, Liliana M and Carmen G 2016 J. Am. Ceram. Soc. 99 2382

    Article  Google Scholar 

  14. Huiling G, Xiaohui W, Shaopeng Z, Hai W and Longtu L 2014 J. Eur. Ceram. Soc. 34 1733

    Article  Google Scholar 

  15. Huiling G, Xiaohui W, Shaopeng Z, Zhibin Tian and Longtu L 2012 J. Appl. Phys. 112 114

    Google Scholar 

  16. Takao S and Nobuyoshi F 2017 Jpn J. Appl. Phys. 56 10PB04

    Article  Google Scholar 

  17. Kurt L and George A S 1962 J. Appl. Phys. 33 2036

    Article  Google Scholar 

  18. Eugene L 1982 J. Appl. Phys. 53 6229

    Article  Google Scholar 

  19. Surendra Singh B, Basanta R, Nirupam B and Kumar Mahesh 2016 J. Appl. Phys. 120 115305

    Article  Google Scholar 

  20. Rainer W, Tudor B and Karl-Heinz H 1990 J. Am. Ceram. Soc. 73 1645

    Article  Google Scholar 

  21. Rainer W, Tudor B and Karl-Heinz H 1990 J. Am. Ceram. Soc. 73 1654

    Article  Google Scholar 

  22. Tudor B, Rainer W and Karl-Heinz H 1990 J. Am. Ceram. Soc. 73 1663

    Article  Google Scholar 

  23. Russell Alan M, Thomas A P, Patrick M L and Clive A R 2015 J. Appl. Phys. 118 164102

    Article  Google Scholar 

  24. Yumei Z, Dezhen X, Xiangdong D, Lixue Z, Jun S and Xiaobing R 2013 J. Phys. Condens. Matter 25 435901

    Article  Google Scholar 

  25. Russell A and Clive A R 2016 J. Am. Ceram. Soc. 99 3360

    Article  Google Scholar 

  26. Seok-Hyun Y, Clive A R and Kang-Heon H 2010 J. Appl. Phys. 108 064101

    Article  ADS  Google Scholar 

  27. Seok-Hyun Y, Jong-Bong L, Sang-Hyuk K and Doo-Young K 2013 J. Mater. Res. 28 3252

    Article  ADS  Google Scholar 

  28. Smyth Donald M 2002 J. Electroceram. 9 179186

    Article  Google Scholar 

  29. Ning H C, Ranjan S and Donald M S 1981 J. Electrochem. Soc. 128 1762

    Article  Google Scholar 

  30. Surendra Singh B, Vijendra Singh B and Mahesh K 2017 Thin Solid Films 17 107

    Google Scholar 

  31. Xin G and Zaoli Z 2003 Acta Mater. 51 2539

    Article  Google Scholar 

  32. Sung-Yoon C, Duk Yong Y and Suk-Joong L K 2002 Acta Mater. 50 3361

    Article  ADS  Google Scholar 

  33. Hwan-Wen L, Mike S H C and Hong-Yang L 2009 J. Am. Ceram. Soc. 92 3037

    Article  Google Scholar 

  34. In-Tae S, Hyung-Won K and Seung Ho H 2022 J. Korean. Inst. Electr. Electron. Mater. Eng. 35 103118

    Google Scholar 

  35. Takaaki T, Motohiro S, Hirofumi K, Satoshi W, Kenji S and Hirokazu C 2005 Jpn J. Appl. Phys. 44 69

    Google Scholar 

  36. Junko Y, Naoki K, Arashi T, Akira S, Yukie N and Takeshi N 1996 J. Power Sources 60 199

    Article  Google Scholar 

  37. Shinsuke T, Koichiro M, Youichi M and Hiroshi K 2007 Ferroelectrics 356 78

    Article  Google Scholar 

  38. Wayne L and Clive A R 2008 J. Am. Ceram. Soc. 91 3251

    Article  Google Scholar 

  39. Wayne L and Clive A R 2008 J. Am. Ceram. Soc. 91 3245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Soon Shin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.S., Kim, D.C., Shin, H.S. et al. Effect of oxygen vacancies on dielectric property and reliability of anti-ferroelectric PLZT applicable to EV-MLCC. Bull Mater Sci 47, 39 (2024). https://doi.org/10.1007/s12034-023-03105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03105-z

Keywords

Navigation