Skip to main content
Log in

Development of KNNLTS–PVDF-based flexible piezoelectric generator for energy-harvesting application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, a flexible piezoelectric generator (PEG) based on (Li, Ta, Sb) modified (K, Na) NbO3 (KNNLTS)/poly(vinylidene fluoride) (PVDF) flexible composite film is fabricated. The prepared films are characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The addition of KNNLTS in the PVDF polymer matrix has resulted in the enhancement in the ferroelectric, piezoelectric, dielectric and piezoelectric output performance. The maximum generated open circuit peak-to-peak voltage from the PVDF/KNNLTS PEG was 36.58 V, which is almost four times higher than the voltage obtained using pure PVDF. The performance of the PEG is also tested under different human body motions, such as fist beating, elbow bending, and quenching and fist opening, which shows the maximum voltage of 5.48, 4.12 and 1.72 V, respectively. The present work demonstrated that high-performance PEG can be developed by modifying KNN ceramics by suitable dopants that can be used in self-powered and wearable devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Chen W and Lei Y 2018 Renew. Energy 123 1

    Article  Google Scholar 

  2. Badatya S, Bharti D K, Srivastava A K and Gupta M K 2021 J. Alloys Compd. 863 158406

    Article  CAS  Google Scholar 

  3. Kaur A, Gupta A, Ying C, Rahmani M and Sapra G 2023 Microelectron. Eng. 275 1119992

    Article  Google Scholar 

  4. Kuang Y and Zhu M 2019 Compos. Part B Eng. 158 189

    Article  Google Scholar 

  5. He J, Zhang P, Jing P, Deng L and Zhang H 2023 Microelectron. Eng. 275 111994

    Article  CAS  Google Scholar 

  6. Seung W, Gupta M K, Lee K Y, Shin K S, Lee J H, Kim T Y et al 2015 ACS Nano 9 3501

    Article  CAS  PubMed  Google Scholar 

  7. Yaqoob U, Habibur R M, Sheeraz M and Kim H C 2019 Compos. Part B Eng. 159 259

    Article  CAS  Google Scholar 

  8. Cheng X, Liu Z, Jing Q, Mao P, Guo K, Lu J et al 2023 J. Colloid Interface Sci. 629 11

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Jiang F, Zhhao W-S and Zhang J 2020 Microelectron. Eng. 225 111279

    Article  CAS  Google Scholar 

  10. Wu J, Xiao D and Zhu J 2015 Chem. Rev. 115 2559

    Article  CAS  PubMed  Google Scholar 

  11. Verma K, Goel S and Sharma R 2022 J. Mater. Sci.: Mater. Electron. 33 26067

    CAS  Google Scholar 

  12. Zhang Y, Kim H, Wang Q, Jo W, Kingon A I, Kim S-H et al 2020 Nanoscale Adv. 2 3131

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Egerton L and Dillon D M 2018 J. Am. Ceram. Soc. 42 438

    Article  Google Scholar 

  14. Zheng M, Hou Y, Chao L and Zhu M 2018 J. Mater. Sci.: Mater. Electron. 29 9582

    CAS  Google Scholar 

  15. Zhang Y, Liu X, Wang G, Li Y, Zhang S, Wang D et al 2020 J. Alloys Compd. 825 154020

    Article  CAS  Google Scholar 

  16. Batra K, Sinha N and Kumar B 2020 J. Alloys Compd. 818 152874

    Article  CAS  Google Scholar 

  17. Zhou Z, Du X, Zhang Z, Luo J, Niu S, Shen D et al 2021 Nano Energy 82 105709

    Article  CAS  Google Scholar 

  18. Huan Y, Wei T, Wang Z, Shen H, Lin X, Huang S et al 2020 J. Materiomics 6 355

    Article  Google Scholar 

  19. Bairagi S and Ali S W 2019 Eur. Polym. J. 116 554

    Article  CAS  Google Scholar 

  20. Wua Y, Maa F, Qua J, Luo Y, Lv C, Guo Q et al Appl. Surface Sci. 469 283

  21. Nair K S, Varghese H, Chandran A, Hareesh U N S, Chouprik A, Spiridonov M et al 2022 Mater. Today Commun. 31 103291

    Article  CAS  Google Scholar 

  22. Bai Z, Yao Z, Wu G, Liu K, Ye D, Tao Y et al 2023 Sens. Actuators: A Phys. 357 114407

    Article  CAS  Google Scholar 

  23. Wang X M, Sun F Z, Yin G C, Wang Y T, Liu B and Dong M D 2018 Sensors 18 16

    Google Scholar 

  24. Lu L, Ding W, Liu J and Yang B 2020 Nano Energy 78 105251

    Article  CAS  Google Scholar 

  25. Jin L, Ma S, Deng W, Yan C, Yang T, Chu X et al 2018 Nano Energy 50 632

    Article  CAS  Google Scholar 

  26. Ryu C, Hajra S, Sahu M, Jung S I, Jang I R and Kim H J 2022 Mater. Lett. 309 131308

    Article  CAS  Google Scholar 

  27. Bairagi S and Ali S W 2020 Energy 198 117385

    Article  CAS  Google Scholar 

  28. Abdullah A M, Sadaf M U K, Tasnim F, Vasquez H, Lozano K and Uddin M K 2021 Nano Energy 86 106133

    Article  CAS  Google Scholar 

  29. Bairagi S and Ali S W 2020 Org. Electron. 78 105547

    Article  CAS  Google Scholar 

  30. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T et al 2004 Nature 423 84

    Article  ADS  Google Scholar 

  31. Gao Y, Zhang J, Qing Y, Tan Y, Zhang Z and Hao X 2011 J. Am. Ceram. Soc. 94 2968

    Article  CAS  Google Scholar 

  32. Lv Y G, Wang C L, Zhang J L, Wu L, Zhao M L and Xu J P 2009 Mater. Res. Bull. 44 284

    Article  CAS  Google Scholar 

  33. Ming B-Q, Wang J-F, Qi P and Zang G-Z 2007 J. Appl. Phys. 101 054103

    Article  ADS  Google Scholar 

  34. Wang K and Li J-F 2010 J. Am. Ceram. Soc. 93 1101

    Article  CAS  Google Scholar 

  35. Zhang C, Fan Y, Li H, Li Y, Zhang L, Cao S et al ACS Nano 12 4803

  36. Gupta M K, Kim S-W and Kumar B 2016 ACS Appl. Mater. Interfaces 8 1766

  37. Dwivedi S, Pareek T and Kumar S 2018 RSC Adv. 8 24286

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Zhang M H, Wang K, Zhou J S, Zhou J S, Chu J C, Lv X et al 2017 Acta Mater. 122 344

    Article  CAS  ADS  Google Scholar 

  39. Jaleh B and Jabbari A 2014 Appl. Surf. Sci. 20 339

    Article  ADS  Google Scholar 

  40. Devi P and Ramachandran K 2011 J. Exp. Nanosci. 6 281

    Article  CAS  Google Scholar 

  41. Hwang H J, Yang J H, Kang S C, Cho C, Kang C G, Lee Y G et al 2013 Microelectron. Eng. 109 87

    Article  CAS  Google Scholar 

  42. Li Y, Su X, Liang K, Luo C, Li P, Hu J et al 2021 Microelectron. Eng. 244–246 111557

    Article  Google Scholar 

  43. Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S et al 2023 J. Alloys Compd. 960 170664

    Article  CAS  Google Scholar 

  44. Soin N, Boyer D, Prashanth K, Sharma S, Narasimulu A A, Luo J et al 2015 Chem. Commun. 51 8257

    Article  CAS  Google Scholar 

  45. Sabry R S and Hussein A D 2019 Polym. Test. 79 106001

    Article  CAS  Google Scholar 

  46. Lee J S, Shin K-Y, Cheong O J, Kim J H and Jang 2015 J. Sci. Rep. 5 7887

  47. Chandrasekhar M and Kumar P 2015 Ceram. Int. 41 5574

    Article  CAS  Google Scholar 

  48. Mirzazadeh Z, Sherafat Z and Bagherzadeh E 2021 Ceram. Int. 47 6211

    Article  CAS  Google Scholar 

  49. Jella V, Ippili S, Eom J-H, Choi J and Yoon S-G 2018 Nano Energy 53 46

    Article  CAS  Google Scholar 

  50. Sinha N, Goel S, Joseph A J, Yadav H, Batra K, Gupta M K et al 2018 Ceram. Int. 44 8582

    Article  CAS  Google Scholar 

  51. Goel S, Sinha N, Yadav H, Joseph A J and Kumar B 2017 Phys. E Low-Dimens. Syst. Nanostruct. 91 72

    Article  CAS  ADS  Google Scholar 

  52. Verma K and Sharma R 2023 Chin. J. Phys. 84 198

    Article  CAS  Google Scholar 

  53. Hyeon D Y, Lee G J, Lee S H, Park J J, Kim S, Lee M et al 2022 Compos. Part B 234 109671

    Article  CAS  Google Scholar 

  54. Teka A, Bairagi S, Shahadat Md, Joshi M, Ahammad S Z and Ali S W 2018 Polym. Adv. Technol. 29 1

    Google Scholar 

  55. Bairagi S and Ali S W 2019 Energy Technol. 7 1900538

    Article  CAS  Google Scholar 

  56. Bairagi S and Ali S W 2020 Int. J. Energy Res. 1

  57. Zhang Z, Chen Y and Guo J 2019 Phys. E: Low-Dimens. Syst. Nanostruct. 105 212

    Article  CAS  ADS  Google Scholar 

  58. Goel S, Sinha N, Yadav H, Joseph A J and Kumar B 2017 Physica E 91 72

    Article  CAS  ADS  Google Scholar 

  59. Hu P, Yan L, Zhao C, Zhang Y and Niu J 2018 Compos. Sci. Technol. 168 327

    Article  CAS  Google Scholar 

  60. Petrovic M V, Cordero F, Mercadelli E, Brunengo E, Ilic N, Galassi C et al 2021 J. Alloys Compd. 884 161071

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the DTU Project Research Grant (F.NO.DTU/IRD/619/2019/2113) for providing the research grant to perform the research work. Komal Verma expresses her gratitude to Delhi Technological University (DTU), India, for providing the DTU fellowship (2K19/PHDAP/06), and is also thankful to Dr Sahil Goel for helping in doing data collection and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Sharma.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 46793 KB)

Supplementary file2 (MP4 31930 KB)

Supplementary file3 (MP4 58181 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, K., Sharma, R. Development of KNNLTS–PVDF-based flexible piezoelectric generator for energy-harvesting application. Bull Mater Sci 47, 38 (2024). https://doi.org/10.1007/s12034-023-03141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03141-9

Keywords

Navigation