Skip to main content

Advertisement

Log in

Mesenchymal stem cells in PRP and PRF containing poly(3-caprolactone)/gelatin Scaffold: a comparative in-vitro study

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Scaffold design is one of the three most essential parts of tissue engineering. Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) have been used in clinics and regenerative medicine for years. However, the temporal release of their growth factors limits their efficacy in tissue engineering. In the present study, we planned to synthesize nanofibrous scaffolds with the incorporation of PRP and PRF by electrospinning method to evaluate the effect of the release of PRP and PRF growth factors on osteogenic gene expression, calcification, proliferation, and cell adhesion of human bone marrow mesenchymal stem cell (h-BMSC) as they are part of scaffold structures. Therefore, we combined PRP/PRF, derived from the centrifugation of whole blood, with gelatin and Polycaprolactone (PCL) and produced nanofibrous electrospun PCL/Gel/PRP and PCL/Gel/PRF scaffolds. Three groups of scaffolds were fabricated, and h-BMSCs were seeded on them: (1) PCL/Gel; (2) PCL/Gel/PRP; (3) PCL/Gel/PRF. MTS assay was performed to assess cell proliferation and adhesion, and alizarin red staining confirmed the formation of bone minerals during the experiment. The result indicated that PCL/Gel did not have any better outcomes than the PRP and PRF group in any study variants after the first day of the experiment. PCL/gelatin/PRF was more successful regarding cell proliferation and adhesion. Although PCL/gelatin/PRP showed more promising results on the last day of the experiment in mineralization and osteogenic gene expression, except RUNX2, in which the difference with PCL/gelatin/PRF group was not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gomes M, Mikos A, Reis R (2004) Injectable polymeric scaffolds for bone tissue engineering, biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Boca Raton, pp 29–38

    Google Scholar 

  2. Johnson PC, Mikos AG, Fisher JP, Jansen JA (2007) Strategic directions in tissue engineering. Tissue Eng 13(12):2827–2837

    Article  PubMed  Google Scholar 

  3. Mao J, Vunjak-Novakovic G, Mikos A, Atala A (2007) Regenerative medicine: translational approaches and tissue engineering. Artech House, Boston, pp 1–3

    Google Scholar 

  4. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarkar MR, Augat P, Shefelbine SJ, Schorlemmer S, Huber-Lang M, Claes L, Kinzl L, Ignatius A (2006) Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27(9):1817–1823

    Article  CAS  PubMed  Google Scholar 

  6. Sheykhhasan M, Qomi RT, Kalhor N et al (2015) Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. Indian J Orthop 49(5):561

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mobasheri A, Kalamegam G, Musumeci G et al (2014) Chondrocyte and mesenchymal stem cellbased therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 78(3):188–198

    Article  CAS  PubMed  Google Scholar 

  8. Bornes TD, Adesida AB, Jomha NM (2014) Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther 16(5):432

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gleeson J, Plunkett N, O’Brien F (2010) Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater 20:218–230

    Article  CAS  PubMed  Google Scholar 

  10. Sreerekha P, Menon D, Nair S, Chennazhi K (2013) Fabrication of fibrin based Electrospun Multiscale composite scaffold for tissue engineering applications. J Biomed Nanotechnol 9(5):790–800

    Article  CAS  PubMed  Google Scholar 

  11. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886

    Article  CAS  PubMed  Google Scholar 

  12. Ren K, Wang Y, Sun T, Yue W, Zhang H (2017) Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C 78:324–332

    Article  CAS  Google Scholar 

  13. Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of Polymer nanofbers for tissue regeneration. Prog Polym Sci 46:1–24

    Article  Google Scholar 

  14. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  15. Hürzeler MB, Kohal RJ, Naghshbandl J, Mota LF, Conradt J, Hutmacher D, Caffesse RG (1998) Evaluation of a new bioresorbable barrier to facilitate guided bone regeneration around exposed implant threads: an experimental study in the monkey. Int J Oral Maxillofac Surg 27:315–320

    Article  PubMed  Google Scholar 

  16. Bosworth LA, Downes S (2010) Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym Degrad Stab 95:2269–2276

    Article  CAS  Google Scholar 

  17. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529

    Article  CAS  PubMed  Google Scholar 

  18. Zein I, Hutmacher DC, Tan KC, Teoh, (2002) SH fused deposition modeling of novel scaffold architectures for tissue Engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  PubMed  Google Scholar 

  19. Yu W, Zhao W, Zhu C, Zhang X, Ye D, Zhang W (2011) Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ecaprolactone) nerve conduit with tailored degradation rate. J BMC Neurosci 12:68–81

    Article  CAS  Google Scholar 

  20. Panseri S, Cunha C, Lowery J, Carro UD, Taraballi F, Amadio S (2008) Electrospun micro and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. J BMC Biotechnol 8:39–50

    Article  Google Scholar 

  21. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY (2006) An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomedical Mater Res Part B: Appl Biomaterials 78B:283–290

    Article  CAS  Google Scholar 

  22. Li WJ, Cooper RL Jr, Tuan RS (2006) Fabrication and characterization of six electrospun poly(a-hydroxyester)-based nanofibrous scaffolds for tissue engineering applications. Acta Biomater 2:377–385

    Article  PubMed  Google Scholar 

  23. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330

    Article  CAS  PubMed  Google Scholar 

  24. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539

    Article  CAS  PubMed  Google Scholar 

  25. Ehrenfest DMD, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte-and platelet-rich fibrin (L-PRF). Trends Biotechnol 27(3):158–167

    Article  Google Scholar 

  26. Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597

    Article  CAS  PubMed  Google Scholar 

  27. Borzini P, Mazzucco I, Blackwell P (2007) Plateletrich plasma (PRP) and platelet derivatives for topical therapy. What is true from the biological view point? ISBT Sci Ser 2:272–281

    Article  CAS  Google Scholar 

  28. Lana JFSD, Santana MHA, Belangero WD, Luzo ACM (2013) Platelet-rich plasma: regenerative medicine: sports medicine, orthopedic, and recovery of musculoskeletal injuries. Springer Science & Business Media, Berlin

    Google Scholar 

  29. Thorwarth M, Rupprecht S, Falk S, Felszeghy E, Wiltfang J, Schlegel KA (2005) Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (PRP)—an immunohistochemical analysis. Biomaterials 26:2575–2584

    Article  CAS  PubMed  Google Scholar 

  30. Dohan DM, Choukroun J, Diss A et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: plateletrelated biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:E45–50

    Article  PubMed  Google Scholar 

  31. Beigi MH, Atefi A, Ghanaei HR, Labbaf S, Ejeian F, Nasr-Esfahani MH (2018) Activated platelet‐rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. J Tissue Eng Regen Med 12(6):1327–1338

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Reed DA, Min L, Gopinathan G, Li S, Dangaria SJ, Li L, Geng Y, Galang MT, Gajendrareddy P, Zhou Y (2014) Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2. Int J Mol Sci 15(5):8509–8525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329(1):77–84

    Article  CAS  PubMed  Google Scholar 

  34. Beigi MH, Safaie N, Nasr-Esfahani MH, Kiani A (2019) 3D titania nanofiber-like webs induced by plasma ionization: a new direction for bioreactivity and osteoinductivity enhancement of biomaterials. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  35. Wang W, Yeung KW (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater 2(4):224–247

    Article  Google Scholar 

  36. Liu J, Nie H, Xu Z, Guo F, Guo S, Yin J, Wang Y, Zhang C (2015) Construction of PRP-containing nanofibrous scaffolds for controlled release and their application to cartilage regeneration. J Mater Chem B 3(4):581–591

    Article  CAS  PubMed  Google Scholar 

  37. Lundquist R, Dziegiel MH, Agren MS (2008) Bioactivity and stability of endogenous fibrogenic factors in platelet-rich fibrin. Wound Repair Regen 16:356–363

    Article  PubMed  Google Scholar 

  38. Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJ, Jansen JA (2013) Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34(3):735–745

    Article  CAS  PubMed  Google Scholar 

  39. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features, oral Surg. Oral Med Oral Pathol Oral Radiol Endod 101(3):e45–50

    Article  Google Scholar 

  40. Pinto NR, Ubilla M, Zamora Y, Rio VD, Dohan Ehrenfest DM, Quirynen M (2018) Leucocyte- and platelet-rich fibrin (L-PRF) as a regenerative medicine strategy for the treatment of refractory leg ulcers: a prospective cohort study. Platelets 29(5):468–475

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Han L, Sun T, Wang W, Li X, Wu B (2019) Preparation and effect of lyophilized platelet-rich fibrin on the osteogenic potential of bone marrow mesenchymal stem cells in vitro and in vivo. Heliyon 5(10):e02739

    Article  PubMed  PubMed Central  Google Scholar 

  42. Isobe K, Watanebe T, Kawabata H, Kitamura Y, Okudera T, Okudera H, Uematsu K, Okuda K, Nakata K, Tanaka T, Kawase T (2017) Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF). Int J Implant Dent 3(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu M, Chen G, Li Y-P (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and Disease. Bone Res 4:16009

    Article  PubMed  PubMed Central  Google Scholar 

  44. Siddiqui JA, Partridge NC (2016) Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology 31(3):233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Weng Y, Lu S, Zong C, Qiu J, Liu Y, Liu B (2015) Osteoblastic mesenchymal stem cell sheet combined with Choukroun platelet-rich fibrin induces bone formation at an ectopic site. J Biomed Mater Res B Appl Biomater 103(6):1204–1216

    Article  CAS  PubMed  Google Scholar 

  46. Kazemi D, Fakhrjou A, Dizaji VM, Alishahi MK (2014) Effect of autologous platelet rich fibrin on the healing of experimental articular cartilage defects of the knee in an animal model. BioMed Res Int 2014:486436

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beitzel K, McCarthy MB, Cote MP, Russell RP, Apostolakos J, Ramos DM, Kumbar SG, Imhoff AB, Arciero RA, Mazzocca AD (2014) Properties of biologic scaffolds and their response to mesenchymal stem cells. Arthroscopy 30(3):289–298

    Article  PubMed  Google Scholar 

  48. He L, Lin Y, Hu X, Zhang Y, Wu H (2009) A comparative study of plateletrich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 108(5):707–713

    Article  Google Scholar 

  49. Landesberg R, Roy M, Glickman RS (2000) Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg 58(3):297–300

    Article  CAS  PubMed  Google Scholar 

  50. Miranda AL, Soto-Blanco B, Lopes PR, Victor RM, Palhares MS (2018) Influence of anticoagulants on platelet and leukocyte concentration from platelet-rich plasma derived from blood of horses and mules. J Equine Veterinary Sci 63:46–50

    Article  Google Scholar 

  51. Mody, Lazarus (1999) Semple. Preanalytical requirements for flow cytometric evaluation of platelet activation: choice of anticoagulant. Transfus Med 9(2):147–154

    Article  CAS  PubMed  Google Scholar 

  52. Collins T, Alexander D, Barkatali B (2021) Platelet-rich plasma: a narrative review. EFORT Open Rev 6(4):225–235

    Article  PubMed  PubMed Central  Google Scholar 

  53. Arora S, Agnihotri N (2017) Platelet derived biomaterials for therapeutic use: review of technical aspects. Indian J Hematol Blood Transf 33:159–167

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mostafa Aghamohseni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article note

Samin Sirous and MohammadMostafa Aghamohseni contributed equally as first author

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirous, S., Aghamohseni, M.M., Farhad, S.Z. et al. Mesenchymal stem cells in PRP and PRF containing poly(3-caprolactone)/gelatin Scaffold: a comparative in-vitro study. Cell Tissue Bank (2024). https://doi.org/10.1007/s10561-023-10116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10561-023-10116-x

Keywords

Navigation