Skip to main content
Log in

Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Background

One of the causes of antibiotic resistance is the reduced accumulation of antibiotics in bacterial cells through pumping out the drugs. Silybin, a key component of the Silybum marianum plant, exhibits various beneficial properties, including anti-bacterial, anti-inflammatory, antioxidant, and hepatoprotective effects.

Methods and results

Clinical isolates of E. coli were procured from 17 Shahrivar Children’s Hospital in Rasht, Guilan, located in northern Iran. Their susceptibility to six antibiotics was assessed using disc diffusion and broth dilution (MIC) methods. The antibacterial effects of silybin-loaded polymersome nanoparticles (SPNs) were investigated with broth dilution (MIC) and biofilm assays. Molecular docking was utilized to evaluate silybin’s (the antibacterial component) binding affinity to efflux pumps, porins, and their regulatory elements. Additionally, qRT-PCR analysis explored the expression patterns of acrA, acrB, tolC, ompC, and ompF genes in both SPNs (sub-MIC) and ciprofloxacin (sub-MIC)-treated and untreated E. coli isolates. The combined use of SPNs and ciprofloxacin exhibited a notable reduction in bacterial growth and biofilm formation, in ciprofloxacin-resistant isolates. The study identified eight overlapping binding sites of the AcrABZ-TolC efflux pump in association with silybin, demonstrating a binding affinity ranging from −7.688 to −10.33 Kcal/mol. Furthermore, the qRT-PCR analysis showed that silybin upregulated AcrAB-TolC efflux pump genes and downregulated ompC and ompF porin genes in combination with ciprofloxacin in transcriptional level in uropathogenic E. coli.

Conclusions

Silybin, a safe herbal compound, exhibits potential in inhibiting antibiotic resistance within bacterial isolates, potentially through the regulation of gene expression and plausible binding to target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal C, Wadhwa R, Deep G, Biedermann D, Gažák R, Křen V, Agarwal R (2013) Anti-cancer efficacy of silybin derivatives - a structure-activity relationship. PLoS One 8:e60074

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Alzayn M, Dulyayangkul P, Satapoomin N, Heesom KJ, Avison MB (2021) OmpF downregulation mediated by sigma E or OmpR activation confers cefalexin resistance in Escherichia coli in the absence of acquired β-lactamases. Antimicrob Agents Chemother 65:e0100421

    Article  PubMed  Google Scholar 

  • Amaral L, Martins A, Spengler G, Molnar J (2014) Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol 4:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Anes J, McCusker MP, Fanning S, Martins M (2015) The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 6:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Arya SS, Sharma MM, Das RK, Rookes J, Cahill D, Lenka SK (2019) Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon 5:e02021

    Article  PubMed  PubMed Central  Google Scholar 

  • Bag A, Chattopadhyay RR (2014) Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Nat Prod Res 28:1280–1283

    Article  CAS  PubMed  Google Scholar 

  • Baslé A, Rummel G, Storici P, Rosenbusch JP, Schirmer T (2006) Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J Mol Biol 362:933–942

    Article  PubMed  Google Scholar 

  • Chetri S, Bhowmik D, Paul D, Pandey P, Chanda DD, Chakravarty A, Bora D, Bhattacharjee A (2019a) AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol 19:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Chetri S, Singha M, Bhowmik D, Nath K, Chanda DD, Chakravarty A, Bhattacharjee A (2019b) Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res Notes 12:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi U, Lee C-R (2019) Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol 10:953

    Article  PubMed  PubMed Central  Google Scholar 

  • Danese PN, Pratt LA, Dove SL, Kolter R (2000) The outer membrane protein, Antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37:424–432

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira DR, Tintino SR, Braga MF, Boligon AA, Athayde ML, Coutinho HD, De Menezes IR, Fachinetto R (2015) In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. Biomed Res Int 2015:292797

    PubMed  Google Scholar 

  • Fernández L, Hancock RE (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25:661–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferris HU, Coles M, Lupas AN, Hartmann MD (2014) Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. J Struct Biol 186:376–379

    Article  CAS  PubMed  Google Scholar 

  • Gu R, Li M, Su C-C, Long F, Routh MD, Yang F, McDermott G, Yu EW (2008) Conformational change of the AcrR regulator reveals a possible mechanism of induction. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:584–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossainzadeh S, Ranji N, Naderi Sohi A, Najafi F (2019) Silibinin encapsulation in polymersome: a promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of miR-125b/miR-182 in human breast cancer cells. J Cell Physiol 234:22285–22298

    Article  CAS  PubMed  Google Scholar 

  • Hughson F, Mechaly AE, Sassoon N, Betton J-M, Alzari PM (2014) Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol 12:e1001776

    Article  Google Scholar 

  • Jaktaji RP, Heidari F (2013) Study the expression of ompf gene in Esherichia coli Mutants. Indian J Pharm Sci 75:540–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia NP, Mahajan P, Mehra R, Nargotra A, Sharma JP, Koul S, Khan IA (2012) Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother 67:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Khakinezhad Tehrani F, Ranji N, Kouhkan F, Hosseinzadeh S (2020) Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. Iran J Basic Med Sci 23:469–482

    PubMed  PubMed Central  Google Scholar 

  • Kim T, Duong T, Wu C-A, Choi J, Lan N, Kang SW, Lokanath NK, Shin D, Hwang H-Y, Kim KK (2014) Structural insights into the molecular mechanism of Escherichia coli SdiA, a quorum-sensing receptor. Acta Cryst Sect D Biol Cryst 70:694–707

    Article  CAS  ADS  Google Scholar 

  • Kong H-K, Pan Q, Lo W-U, Liu X, Law COK, Chan T-F, Ho P-L, Lau TC-K (2018) Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation. Sci Rep 8:15248

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Kwon HJ, Bennik MHJ, Demple B, Ellenberger T (2000) Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7:424–430

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Jang KA, Cha JD (2012) Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. J Biomed Biotechnol 2012:618081

    Article  PubMed  Google Scholar 

  • Li B, Huang Q, Cui A, Liu X, Hou B, Zhang L, Liu M, Meng X, Li S (2018) Overexpression of outer membrane protein X (OmpX) compensates for the effect of TolC inactivation on biofilm formation and curli production in extraintestinal pathogenic Escherichia coli (ExPEC). Front Cell Infect Microbiol 8

  • Liu YF, Yan JJ, Lei HY, Teng CH, Wang MC, Tseng CC, Wu JJ (2012) Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect Immun 80:1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisuria VB, Hosseinidoust Z, Tufenkji N (2015) Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. Appl Environ Microbiol 81:3782–3792

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Martínez-Hackert E, Stock AM (1997) The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5:109–124

    Article  PubMed  Google Scholar 

  • Mechaly AE, Soto Diaz S, Sassoon N, Buschiazzo A, Betton J-M, Alzari PM (2017) Structural coupling between autokinase and phosphotransferase reactions in a bacterial histidine kinase. Structure 25:939–944.e3

    Article  CAS  PubMed  Google Scholar 

  • Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mahdouani K, Chaieb K (2016) Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 99:95–100

    Article  CAS  PubMed  Google Scholar 

  • Pagano MT, Fecchi K, Pierdominici M, Ortona E, Peruzzu D (2022) Human monocyte-derived dendritic cells are the pharmacological target of the immunosuppressant flavonoid silibinin. Int J Mol Sci 23

  • Pakizehkar S, Ranji N, Sohi AN, Sadeghizadeh M (2020) Polymersome-assisted delivery of curcumin: a suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells. Polym Adv Technol 31:160–177

    Article  CAS  Google Scholar 

  • Pourahmad Jaktaji R, Zargampoor F (2017) Expression of TolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants. Iran J Pharm Res 16:1185–1189

    PubMed  PubMed Central  Google Scholar 

  • Rahbar Takrami S, Ranji N, Sadeghizadeh M (2019) Antibacterial effects of curcumin encapsulated in nanoparticles on clinical isolates of Pseudomonas aeruginosa through downregulation of efflux pumps. Mol Biol Rep 46:2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Rahmati S, Yang S, Davidson AL, Zechiedrich EL (2002) Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43:677–685

    Article  CAS  PubMed  Google Scholar 

  • Rhee S, Martin RG, Rosner JL, Davies DR (1998) A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci 95:10413–10418

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ruiz C, Levy SB (2014) Regulation of acrAB expression by cellular metabolites in Escherichia coli. J Antimicrob Chemother 69:390–399

    Article  CAS  PubMed  Google Scholar 

  • Siryaporn A, Goulian M (2008) Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli. Mol Microbiol 70:494–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L (2011) Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother 55:921–924

    Article  CAS  PubMed  Google Scholar 

  • Tahmasebi Birgani M, Erfani-Moghadam V, Babaei E, Najafi F, Zamani M, Shariati M, Nazem S, Farhangi B, Motahari P, Sadeghizadeh M (2015) Dendrosomal nano-curcumin; the novel formulation to improve the anticancer properties of curcumin. Prog Clin Biol 5:143–158

    Google Scholar 

  • Tehrani FK, Ranji N, Kouhkan F, Hosseinzadeh S (2021) PANC-1 cancer stem-like cell death with silybin encapsulated in polymersomes and deregulation of stemness-related miRNAs and their potential targets. Iran J Basic Med Sci 24:514–523

    Google Scholar 

  • Trot O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Article  Google Scholar 

  • Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M, Pagès JM, Amaral L (2007) Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One 2:e365

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 6:e24905

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, Cramer WA (2008) Crystal structures of the OmpF porin: function in a colicin translocon. EMBO J 27:2171–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasbolaghi Sharahi J, Aliakbar Ahovan Z, Taghizadeh Maleki D, Riahi Rad Z, Riahi Rad Z, Goudarzi M, Shariati A, Bostanghadiri N, Abbasi E, Hashemi A (2020) In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (XDR) bacteria isolated from burn wound infections. Avicenna J Phytomed 10:3–10

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study conception and/or design: E.B., N. R., and M. S.; data processing, collection, perform experiment: S. F. K., A. N. K., M. B., S. A., A. H. E., and F. G. B.; analysis and interpretation of results: S. F. K., E. B., R. K., and N. R.; draft manuscript preparation, visualization: E.B., N. R., and M. S.; critical revision or editing of the article: E.B., M. S., and N. R.; final approval of the version to be published: E.B., M. S., and N. R.; supervision: E.B., M. S., and N.R.; funding acquisition: all authors.

Corresponding authors

Correspondence to Mahdi Shahriarinour or Najmeh Ranji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekri Kohan, S., Nouhi Kararoudi, A., Bazgosha, M. et al. Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli. Int Microbiol (2024). https://doi.org/10.1007/s10123-024-00488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-024-00488-9

Keywords

Navigation