Skip to main content
Log in

Evaluation of surface damage for in-service deteriorated agricultural concrete headworks using 3D point clouds by laser scanning method

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

In the agricultural field, concrete headworks is the most important structure for the irrigation system. In recent years, a number of agricultural concrete infrastructures aging for a long-term period have been increasing. For maintenance and management, conventional inspection methods are time-consuming and costly, such as the electromagnetic wave method and elastic wave method. The detection of surface damage is more effective, safe and reliable than before since the laser scanning method provides detailed geometric information about the structure. The fundamental studies on point cloud data have been conducted in the civil engineering fields; nevertheless, the characteristics of point cloud in agricultural infrastructures, such as dam, headworks and canal, have not been discussed. In this study, 3D point clouds are generated for a concrete irrigation structure using the laser scanning method. The characteristics of surface damage which are quantitatively evaluated using point cloud information, geometric information and intensity parameter are investigated. The types of detected damage are efflorescence and cracks. It is investigated whether point clouds generated from a single scan or multiple scans are more effective for highly accurate detection. The characteristics of surface damage are evaluated by geometric features. The distance between the fitted plane and points is calculated by RANSAC algorithm and roughness parameter. The amount of efflorescence is detected by the distance between the fitted plane from RANSAC algorithm and points. The crack is detected by the local plane fitting method. The types of damage are characterized by the intensity parameter which is related to the color, roughness and moisture of the object. The surface damage and condition are evaluated by both geometric information and intensity parameter. These results show the unique parameters of point clouds from laser scanning methods, such as geometric features and intensity parameter, are useful to evaluate the characteristics of surface damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Shibano.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibano, K., Morozova, N., Ito, Y. et al. Evaluation of surface damage for in-service deteriorated agricultural concrete headworks using 3D point clouds by laser scanning method. Paddy Water Environ 22, 257–269 (2024). https://doi.org/10.1007/s10333-023-00965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-023-00965-3

Keywords

Navigation