Skip to main content
Log in

Non-local hyperdifferential momentum operators in quantum field theory free from tachyons: the case of neutral mesons

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An extended non-local field equations characterised by modified dispersion relations have been constructed based on non-local differential and hyperdifferential quantum operators. The dispersion relations obtained are found to be comparable to those obtained within the framework of unified theories and the covariant Kempf–Mangano algebra but free from tachyons. For the case of neutral meson, the upper limit of the characteristic length scale was found to be very close to the nuclear radius obtained from the study of \(\beta ^{+} \)-decay energy from finite-sized nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Casadio and F Scardigli, Phys. Lett. B 807, 135558 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  2. M C Braidotti, Z H Musslimani and C Conti, Phys. Rev. D 338, 34 (2017)

    Google Scholar 

  3. L Buoninfante, G G Luciano and L Petruzziello, Eur. Phys. J. C 79, 663 (2019)

    Article  ADS  Google Scholar 

  4. M Izadparast and S H Mazharimousavi, Phys. Scr. 95, 075220 (2020)

    Article  CAS  Google Scholar 

  5. S Hossenfelder, Living Rev. Relativ. 16, 2 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. A Kempf, G Mangano and R B Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. A Kempf, J. Phys. A 30, 2093 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. J Oppenheim and S Wehner, Science 330, 1072 (2010)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  9. S Aghababaei and H Moradpour, Quantum Inf. Process. 22(4), 173 (2023), arXiv:2202.07489

  10. S Aghababaei, H Moradpour and H Shabani, Quantum Inf. Process. 21, 57 (2022)

    Article  ADS  Google Scholar 

  11. A Cabello, A Rossi, G Vallone, F De Martini and P Mataloni, Phys. Rev. Lett. 102, 040401 (2009)

    Article  ADS  PubMed  Google Scholar 

  12. H Buhrman, R Cleve, S Massar and R de Wolf, Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  13. R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Y Aharonov and D Bohm, Phys. Rev. 123, 1511 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  15. V A S V Bittencourt, M Blasone, F Illuminati, G Lambiase, G G Luciano and L Petruzziello, Phys. Rev. D 103, 044051 (2021)

    Article  ADS  CAS  Google Scholar 

  16. V N Todorinov, Relativistic generalized uncertainty principle and its implications, Ph.D. Thesis (Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, Canada, 2020)

  17. O Yesilta, Eup. Phys. J. Plus 134(7), 331 (2019), arXiv:1904.07859

  18. K Nozari and M Karami, Mod. Phys. Lett. A 20, 3095 (2015)

    Article  ADS  Google Scholar 

  19. R A El-Nabulsi, Quant. Stud. Math. Found. 6, 235 (2019)

    Article  MathSciNet  Google Scholar 

  20. R A El-Nabulsi, Proc. R. Soc. A 476, 20190729 (2020)

    Article  ADS  Google Scholar 

  21. T P Singh, Pramana – J. Phys. 95, 40 (2021)

    Article  ADS  Google Scholar 

  22. S A Khorram-Hosseini, S Zarrinkamar and H Panahi, Pramana – J. Phys. 92, 53 (2019)

    Article  ADS  Google Scholar 

  23. P A Bushev, J Bourhill, M Goryachev, N Kukharchyk, E Ivanov, S Galliou, M E Tobar and S Danilishin, Phys. Rev. D 100, 066020 (2019)

    Article  ADS  CAS  Google Scholar 

  24. P Bosso, S Das and R B Mann, Phys. Lett. B 785, 498 (2018)

    Article  ADS  CAS  Google Scholar 

  25. B Mashhoon, Phys. Rev. A 75, 042112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. S C Tiwari, Phys. Scr. 85, 025005 (2012)

    Article  ADS  Google Scholar 

  27. W Hicks, Commun. Stoch. Anal. 13, 49 (2019)

    MathSciNet  Google Scholar 

  28. R Hudson and K R Parthasarathy, Commun. Math. Phys. 93, 301 (1984)

    Article  ADS  Google Scholar 

  29. V G Bagrov, Russ. Phys. J. 61, 403 (2018)

  30. T Khachidze, A Khelashvili and I Nadareishvili, Bull. Georg. Acad. Sci. 174, 1 (2006)

  31. S Weinberg, The quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, Cambridge, 1995)

  32. T Jacobson, S Liberati and D Mattingly, Ann. Phys. 321, 150 (2006)

    Article  ADS  CAS  Google Scholar 

  33. S A Alavi and N Rezaei, Pramana – J. Phys. 88, 77 (2017)

    Article  ADS  Google Scholar 

  34. R Gambini and J Pullin, Pramana – J. Phys. 63, 755 (2004)

    Article  ADS  Google Scholar 

  35. S Mirshekari, N Yunes and C M Will, Phys. Rev. D 85, 024041 (2012)

    Article  ADS  Google Scholar 

  36. P Horava, J. High Energy Phys. 03, 020 (2009)

    Article  ADS  Google Scholar 

  37. S Patra and P Ghose, Pramana – J. Phys. 96, 34 (2022)

    Article  ADS  Google Scholar 

  38. R A El-Nabulsi, Can. J. Phys. 99, 703 (2021)

    Article  ADS  CAS  Google Scholar 

  39. R A El-Nabulsi, Appl. Math. Lett. 43, 120 (2015)

    Article  MathSciNet  Google Scholar 

  40. A S Safiedgar, K Nozari and H R Sepangi, Phys. Lett. B 696, 119 (2011)

    Article  ADS  Google Scholar 

  41. R C Myers and M Pospelov, Phys. Rev Lett. 90, 211601 (2003)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  42. Z-Q Chen, E Hu, L Xie and X Zhang, J. Diff. Equ. 263, 6576 (2017)

    Article  ADS  Google Scholar 

  43. Z-Q Chen and X Zhang, Probab. Theory Relat. Fields 165, 267 (2016)

    Article  Google Scholar 

  44. Z-Q Chen and X Zhang, Heat kernels for non-symmetric non-local operators, in: Recent developments in nonlocal theory (de Gruyter Open Poland, Poland, 2017)

  45. A M Fu and A Lascoux, J. Comb. Theor. A 116, 903 (2009)

    Article  Google Scholar 

  46. G Amelino-Camelia, M Matassa, F Mercati and G Rosati, Phys. Rev. Lett. 106, 071301 (2011)

    Article  ADS  PubMed  Google Scholar 

  47. M K Lake, Quantum Rep. 3, 196 (2021)

    Article  Google Scholar 

  48. C Qian, J-Li, A S Khan and G-F Qiao, Phys. Rev. D 101, 116004 (2020)

  49. A O Barvinsky, Mod. Phys. Lett. A 30, 1540003 (2015)

    Article  ADS  Google Scholar 

  50. Y V Dumin, Adv. High Energy Phys. 2014, Article ID241831 (2014)

  51. S O Alexeyev, X Calmet and B N Latosh, Phys. Lett. B 776, 111 (2017)

    Article  ADS  Google Scholar 

  52. C N Cruz, Pramana – J. Phys. 96, 55 (2022)

    Article  ADS  Google Scholar 

  53. A Dzhabrailov, Y Luchko and E Shishkina, Axioms 10, 232 (2021)

    Article  Google Scholar 

  54. I A Aliev and M Eryigit, J. Math. Anal. Appl. 406, 352 (2013)

    Article  MathSciNet  Google Scholar 

  55. I A Aliev, A D Gadjiev and A Aral, J. Approx. Theory 138, 242 (2006)

    Article  MathSciNet  Google Scholar 

  56. E Shishkina, I Ekincioglu and C Keskin, Integral Transform. Spec. Funct. 32, 932 (2021); I Daubechies, Lett. Math. Phys. 2, 459 (1978)

  57. M Miller and S Steinberg, Commun. Math. Phys. 24, 49 (1971)

  58. A Kempf and G Mangano, Phys. Rev. D 55, 7909 (2007)

  59. G P de Brito, P I C Caneda, Y M P Gomes, J T Guaitolini Jr and V Nikoofard, Adv. High Energy Phys. 2017, 4768341 (2017).

    Article  Google Scholar 

  60. A Izadi and S K Moayedi, Ann. Phys. 411, 167956 (2019)

    Article  CAS  Google Scholar 

  61. R A El-Nabulsi and W Anukool, Chaos Solitons Fractals 166, 112907 (2023)

    Article  Google Scholar 

  62. A Boumenir, J. Integral Equat. Appl. 7, 371 (1995)

    Article  Google Scholar 

  63. A Adamu, J. Rad. Nucl. Appl. 6, 45 (2021)

    Article  Google Scholar 

  64. S-H Dong, X-W Hou and Z-Q Ma, Phys. Rev. A 58, 2160 (1990)

    Article  ADS  Google Scholar 

  65. X Y Gu, Z Q Ma and S-H Dong, Phys. Rev. A 67, 062715 (2003)

    Article  ADS  Google Scholar 

  66. S-H Dong, J. Phys. A: Math. Gen. 36, 4977 (2003)

    Article  ADS  Google Scholar 

  67. K M Balasubramaniam, Pramana – J. Phys. 89, 52 (2017)

    Article  ADS  Google Scholar 

  68. M Masud and P Mehta, Pramana – J. Phys. 89, 62 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chiang Mai University for funding this research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anukool, W., El-Nabulsi, R.A. Non-local hyperdifferential momentum operators in quantum field theory free from tachyons: the case of neutral mesons. Pramana - J Phys 98, 29 (2024). https://doi.org/10.1007/s12043-023-02703-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02703-0

Keywords

PACS

Navigation