Skip to main content
Log in

Cosmic growth in f(T) teleparallel gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Physical evolution of cosmological models can be tested by using expansion data, while growth history of these models is capable of testing dynamics of the inhomogeneous parts of energy density. The growth factor, as well as its growth index, gives a clear indication of the performance of cosmological models in the regime of structure formation of early Universe. In this work, we explore the growth index in several leading f(T) cosmological models, based on a specific class of teleparallel gravity theories. These have become prominent in the literature and lead to other formulations of teleparallel gravity. Here we adopt a generalized approach by obtaining the Mészáros equation without immediately imposing the subhorizon limit, because this assumption could lead to over-simplification. This approach gives avenue to study at which k modes the subhorizon limit starts to apply. We obtain numerical results for the growth factor and growth index for a variety of data set combinations for each f(T) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No new data was created or analyzed in this study. Data sharing is not applicable to this article.

References

  1. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)

    Google Scholar 

  2. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1–189 (2012). https://doi.org/10.1016/j.physrep.2012.01.001. arXiv:1106.2476 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  3. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003). https://doi.org/10.1103/RevModPhys.75.559. arXiv:astro-ph/0207347

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Baudis, L.: Dark matter detection. J. Phys. G 43(4), 044001 (2016). https://doi.org/10.1088/0954-3899/43/4/044001

    Article  ADS  CAS  Google Scholar 

  5. Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). https://doi.org/10.1016/j.physrep.2004.08.031. arXiv:hep-ph/0404175

    Article  ADS  CAS  Google Scholar 

  6. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006). https://doi.org/10.1142/S021827180600942X. arXiv:hep-th/0603057

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Gaitskell, R.J.: Direct detection of dark matter. Ann. Rev. Nucl. Part. Sci. 54, 315–359 (2004). https://doi.org/10.1146/annurev.nucl.54.070103.181244

    Article  ADS  CAS  Google Scholar 

  9. Di Bari, P., King, S.F., Merle, A.: Dark radiation or warm dark matter from long lived particle decays in the light of Planck. Phys. Lett. B 724, 77–83 (2013). https://doi.org/10.1016/j.physletb.2013.06.003. arXiv:1303.6267 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  10. Bennett, C.L., Boggess, N.W., Cheng, E.S., Hauser, M.G., Kelsall, T., Mather, J.C., Moseley, S.H., Murdock, T.L., Shafer, R.A., Silverberg, R.F., Smoot, G.F., Weiss, R., Wright, E.L.: Scientific results from the cosmic background explorer (COBE). Proc. Natl. Acad. Sci. 90(11), 4766–4773 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eisenhardt, P.R.M., Marocco, F., Fowler, J.W., Meisner, A.M., Kirkpatrick, J.D., Garcia, N., Jarrett, T.H., Koontz, R., Marchese, E.J., Stanford, S.A., Caselden, D., Cushing, M.C., Cutri, R.M., Faherty, J.K., Gelino, C.R., Gonzalez, A.H., Mainzer, A., Mobasher, B., Schlegel, D.J., Stern, D., Teplitz, H.I., Wright, E.L.: The CatWISE preliminary catalog: motions from WISE and NEOWISE Data. ApJL 247(2), 69 (2020). https://doi.org/10.3847/1538-4365/ab7f2a. arXiv:1908.08902 [astro-ph.IM]

    Article  Google Scholar 

  12. Eriksen, H.K., Banday, A.J., Górski, K.M., Hansen, F.K., Lilje, P.B.: Hemispherical power asymmetry in the third-year Wilkinson microwave anisotropy probe sky maps. ApJL 660(2), 81–84 (2007). https://doi.org/10.1086/518091. arXiv:astro-ph/0701089 [astro-ph]

    Article  ADS  Google Scholar 

  13. Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, 6 (2020). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)]

    Article  CAS  Google Scholar 

  14. Perivolaropoulos, L., Skara, F.: Challenges for \({\Lambda }\)CDM: an update. New Astron. Rev. 95, 101659 (2022). https://doi.org/10.1016/j.newar.2022.101659. arXiv:2105.05208 [astro-ph.CO]

    Article  Google Scholar 

  15. Ade, P.A.R., et al.: Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 594, 14 (2016). https://doi.org/10.1051/0004-6361/201525814. arXiv:1502.01590 [astro-ph.CO]

    Article  CAS  Google Scholar 

  16. Di Valentino, E., et al.: Snowmass 2021—letter of interest cosmology intertwined I: perspectives for the next decade. Astropart. Phys. 131, 102606 (2021). https://doi.org/10.1016/j.astropartphys.2021.102606. arXiv:2008.11283 [astro-ph.CO]

    Article  Google Scholar 

  17. Di Valentino, E., et al.: Snowmass 2021—letter of interest cosmology intertwined II: the Hubble constant tension. Astropart. Phys. 131, 102605 (2021). https://doi.org/10.1016/j.astropartphys.2021.102605. arXiv:2008.11284 [astro-ph.CO]

    Article  Google Scholar 

  18. Di Valentino, E., et al.: Cosmology intertwined III: \(f \sigma _8\) and \(S_8\). Astropart. Phys. 131, 102604 (2021). https://doi.org/10.1016/j.astropartphys.2021.102604. arXiv:2008.11285 [astro-ph.CO]

    Article  Google Scholar 

  19. Di Valentino, E., et al.: Snowmass 2021—letter of interest cosmology intertwined IV: the age of the universe and its curvature. Astropart. Phys. 131, 102607 (2021). https://doi.org/10.1016/j.astropartphys.2021.102607. arXiv:2008.11286 [astro-ph.CO]

    Article  Google Scholar 

  20. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876(1), 85 (2019). https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  21. Anderson, R.I., Koblischke, N.W., Eyer, L.: Reconciling astronomical distance scales with variable red giant stars (2023). arXiv:2303.04790 [astro-ph.CO]

  22. Wong, K.C., et al.: H0LiCOW—XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3\({\sigma }\) tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 498(1), 1420–1439 (2020). https://doi.org/10.1093/mnras/stz3094. arXiv:1907.04869 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  23. Madhavacheril, M.S., et al.: The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters (2023). arXiv:2304.05203 [astro-ph.CO]

  24. Schöneberg, N., Verde, L., Gil-Marín, H., Brieden, S.: BAO+BBN revisited—growing the Hubble tension with a 0.7 km/s/Mpc constraint. JCAP 11, 039 (2022). https://doi.org/10.1088/1475-7516/2022/11/039. arXiv:2209.14330 [astro-ph.CO]

    Article  ADS  Google Scholar 

  25. Riess, A.G.: The expansion of the universe is faster than expected. Nat. Rev. Phys. 2(1), 10–12 (2019). https://doi.org/10.1038/s42254-019-0137-0. arXiv:2001.03624 [astro-ph.CO]

    Article  MathSciNet  Google Scholar 

  26. Pesce, D.W., et al.: The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints. Astrophys. J. Lett. 891(1), 1 (2020). https://doi.org/10.3847/2041-8213/ab75f0. arXiv:2001.09213 [astro-ph.CO]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Jaeger, T., Stahl, B.E., Zheng, W., Filippenko, A.V., Riess, A.G., Galbany, L.: A measurement of the Hubble constant from Type II supernovae. Mon. Not. R. Astron. Soc. 496(3), 3402–3411 (2020). https://doi.org/10.1093/mnras/staa1801. arXiv:2006.03412 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  28. Capozziello, S., Sarracino, G., Spallicci, A.D.A.M.: Questioning the H0 tension via the look-back time. Phys. Dark Univ. 40, 101201 (2023). https://doi.org/10.1016/j.dark.2023.101201. arXiv:2302.13671 [astro-ph.CO]

    Article  Google Scholar 

  29. Abdalla, E., et al.: Cosmology intertwined: a review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. JHEAp 34, 49–211 (2022). https://doi.org/10.1016/j.jheap.2022.04.002. arXiv:2203.06142 [astro-ph.CO]

    Article  ADS  Google Scholar 

  30. Bernal, J.L., Verde, L., Riess, A.G.: The trouble with \(H_0\). JCAP 10, 019 (2016). https://doi.org/10.1088/1475-7516/2016/10/019. arXiv:1607.05617 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  31. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010). https://doi.org/10.1103/RevModPhys.82.451. arXiv:0805.1726 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  32. Saridakis, E.N., et al.: Modified gravity and cosmology: an update by the CANTATA network (2021). arXiv:2105.12582 [gr-qc]

  33. Krishnan, C., Colgáin, E.O., Sheikh-Jabbari, M.M., Yang, T.: Running Hubble tension and a H0 diagnostic. Phys. Rev. D 103(10), 103509 (2021). https://doi.org/10.1103/PhysRevD.103.103509. arXiv:2011.02858 [astro-ph.CO]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Colgáin, E.O., Sheikh-Jabbari, M.M., Solomon, R., Bargiacchi, G., Capozziello, S., Dainotti, M.G., Stojkovic, D.: Revealing intrinsic flat \({\Lambda }\)CDM biases with standardizable candles. Phys. Rev. D 106(4), 041301 (2022). https://doi.org/10.1103/PhysRevD.106.L041301. arXiv:2203.10558 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. Malekjani, M., Conville, R.M., Colgáin, E.O., Pourojaghi, S., Sheikh-Jabbari, M.M.: Negative dark energy density from high redshift pantheon+ supernovae (2023). arXiv:2301.12725 [astro-ph.CO]

  36. Ren, X., Yan, S.-F., Zhao, Y., Cai, Y.-F., Saridakis, E.N.: Gaussian processes and effective field theory of \(f(T)\) gravity under the \(H_0\) tension. Astrophys. J. 932, 2 (2022). https://doi.org/10.3847/1538-4357/ac6ba5. arXiv:2203.01926 [astro-ph.CO]

    Article  Google Scholar 

  37. Dainotti, M.G., De Simone, B., Schiavone, T., Montani, G., Rinaldi, E., Lambiase, G.: On the Hubble constant tension in the SNe Ia Pantheon sample. Astrophys. J. 912(2), 150 (2021). https://doi.org/10.3847/1538-4357/abeb73. arXiv:2103.02117 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  38. Addazi, A., et al.: Quantum gravity phenomenology at the dawn of the multi-messenger era—a review. Prog. Part. Nucl. Phys. 125, 103948 (2022). https://doi.org/10.1016/j.ppnp.2022.103948. arXiv:2111.05659 [hep-ph]

    Article  Google Scholar 

  39. Schöneberg, N., Franco Abellán, G., Pérez Sánchez, A., Witte, S.J., Poulin, V., Lesgourgues, J.: The H0 Olympics: a fair ranking of proposed models. Phys. Rep. 984, 1–55 (2022). https://doi.org/10.1016/j.physrep.2022.07.001. arXiv:2107.10291 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  40. Anchordoqui, L.A.: Decaying dark matter, the \(H_0\) tension, and the lithium problem. Phys. Rev. D 103(3), 035025 (2021). https://doi.org/10.1103/PhysRevD.103.035025. arXiv:2010.09715 [hep-ph]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. Alam, U., Sahni, V., Starobinsky, A.A.: Is dark energy decaying? JCAP 04, 002 (2003). https://doi.org/10.1088/1475-7516/2003/04/002. arXiv:astro-ph/0302302

    Article  ADS  Google Scholar 

  42. Gariazzo, S., Di Valentino, E., Mena, O., Nunes, R.C.: Late-time interacting cosmologies and the Hubble constant tension. Phys. Rev. D 106(2), 023530 (2022). https://doi.org/10.1103/PhysRevD.106.023530. arXiv:2111.03152 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  43. Piedipalumbo, E., Vignolo, S., Feola, P., Capozziello, S.: Interacting quintessence cosmology from Noether symmetries: comparing theoretical predictions with observational data. Phys. Dark Univ. 42, 101274 (2023). https://doi.org/10.1016/j.dark.2023.101274. arXiv:2307.02355 [gr-qc]

    Article  Google Scholar 

  44. Solà, J., Gómez-Valent, A., Cruz Pérez, J.: First evidence of running cosmic vacuum: challenging the concordance model. Astrophys. J. 836(1), 43 (2017). https://doi.org/10.3847/1538-4357/836/1/43. arXiv:1602.02103 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  45. Akarsu, O., Di Valentino, E., Kumar, S., Nunes, R.C., Vazquez, J.A., Yadav, A.: \(\Lambda _{\rm s}\)CDM model: a promising scenario for alleviation of cosmological tensions (2023). arXiv:2307.10899 [astro-ph.CO]

  46. Colgáin, E.O., Pourojaghi, S., Sheikh-Jabbari, M.M., Sherwin, D.: MCMC marginalisation bias and \(\Lambda \)CDM tensions (2023). arXiv:2307.16349 [astro-ph.CO]

  47. Poulin, V., Smith, T.L., Karwal, T.: The ups and downs of early dark energy solutions to the Hubble tension: a review of models, hints and constraints circa 2023 (2023). arXiv:2302.09032 [astro-ph.CO]

  48. Di Valentino, E., Bøehm, C., Hivon, E., Bouchet, F.R.: Reducing the \(H_0\) and \(\sigma _8\) tensions with dark matter-neutrino interactions. Phys. Rev. D 97(4), 043513 (2018). https://doi.org/10.1103/PhysRevD.97.043513. arXiv:1710.02559 [astro-ph.CO]

    Article  ADS  Google Scholar 

  49. Jedamzik, K., Pogosian, L., Zhao, G.-B.: Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension. Commun. Phys. 4, 123 (2021). https://doi.org/10.1038/s42005-021-00628-x. arXiv:2010.04158 [astro-ph.CO]

    Article  Google Scholar 

  50. Escamilla-Rivera, C., Quintero, M.A.C., Capozziello, S.: A deep learning approach to cosmological dark energy models. JCAP 03, 008 (2020). https://doi.org/10.1088/1475-7516/2020/03/008. arXiv:1910.02788 [astro-ph.CO]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  51. Capozziello, S.: Curvature quintessence. Int. J. Mod. Phys. D 11, 483–492 (2002). https://doi.org/10.1142/S0218271802002025. arXiv:gr-qc/0201033

    Article  ADS  MathSciNet  Google Scholar 

  52. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167–321 (2011). https://doi.org/10.1016/j.physrep.2011.09.003. arXiv:1108.6266 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  53. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011). https://doi.org/10.1016/j.physrep.2011.04.001. arXiv:1011.0544 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  54. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rep. 692, 1–104 (2017). https://doi.org/10.1016/j.physrep.2017.06.001. arXiv:1705.11098 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  55. Gutfreund, H., Renn, J.: The formative years of relativity: the history and meaning of Einstein’s Princeton lectures. Princeton University Press, Princeton (2017). http://www.jstor.org/stable/j.ctt1vxm7ts. Accessed 21 July 2023

  56. Bahamonde, S., Dialektopoulos, K.F., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J.L., Mifsud, J., Di Valentino, E.: Teleparallel gravity: from theory to cosmology (2021). arXiv:2106.13793 [gr-qc]

  57. Aldrovandi, R., Pereira, J.G.: Teleparallel Gravity: An Introduction. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5143-9

    Book  Google Scholar 

  58. Cai, Y.-F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 79(10), 106901 (2016). https://doi.org/10.1088/0034-4885/79/10/106901. arXiv:1511.07586 [gr-qc]

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Krssak, M., Hoogen, R.J., Pereira, J.G., Böhmer, C.G., Coley, A.A.: Teleparallel theories of gravity: illuminating a fully invariant approach. Class. Quant. Grav. 36(18), 183001 (2019). https://doi.org/10.1088/1361-6382/ab2e1f. arXiv:1810.12932 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  60. Capozziello, S., De Falco, V., Ferrara, C.: Comparing equivalent gravities: common features and differences. Eur. Phys. J. C 82(10), 865 (2022). https://doi.org/10.1140/epjc/s10052-022-10823-x. arXiv:2208.03011 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  61. Mylova, M., Levi Said, J., Saridakis, E.N.: General effective field theory of teleparallel gravity (2022). arXiv:2211.11420 [gr-qc]

  62. Ferraro, R., Fiorini, F.: Modified teleparallel gravity: inflation without inflation. Phys. Rev. D 75, 084031 (2007). https://doi.org/10.1103/PhysRevD.75.084031. arXiv:gr-qc/0610067

    Article  ADS  MathSciNet  CAS  Google Scholar 

  63. Ferraro, R., Fiorini, F.: On Born-Infeld gravity in Weitzenbock spacetime. Phys. Rev. D 78, 124019 (2008). https://doi.org/10.1103/PhysRevD.78.124019. arXiv:0812.1981 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  64. Bengochea, G.R., Ferraro, R.: Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009). https://doi.org/10.1103/PhysRevD.79.124019. arXiv:0812.1205 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  65. Linder, E.V.: Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 81, 127301 (2010). https://doi.org/10.1103/PhysRevD.81.127301. arXiv:1005.3039 [astro-ph.CO]. [Erratum: Phys.Rev.D 82, 109902 (2010)]

    Article  ADS  CAS  Google Scholar 

  66. Chen, S.-H., Dent, J.B., Dutta, S., Saridakis, E.N.: Cosmological perturbations in f(T) gravity. Phys. Rev. D 83, 023508 (2011). https://doi.org/10.1103/PhysRevD.83.023508. arXiv:1008.1250 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  67. Basilakos, S., Capozziello, S., De Laurentis, M., Paliathanasis, A., Tsamparlis, M.: Noether symmetries and analytical solutions in f(T)-cosmology: a complete study. Phys. Rev. D 88, 103526 (2013). https://doi.org/10.1103/PhysRevD.88.103526. arXiv:1311.2173 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  68. Bahamonde, S., Flathmann, K., Pfeifer, C.: Photon sphere and perihelion shift in weak \(f(T)\) gravity. Phys. Rev. D 100(8), 084064 (2019). https://doi.org/10.1103/PhysRevD.100.084064. arXiv:1907.10858 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  69. Paliathanasis, A., Levi Said, J., Barrow, J.D.: Stability of the Kasner universe in f(T) gravity. Phys. Rev. D 97(4), 044008 (2018). https://doi.org/10.1103/PhysRevD.97.044008. arXiv:1709.03432 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  70. Farrugia, G., Levi Said, J., Finch, A.: Gravitoelectromagnetism, solar system tests, and weak-field solutions in \(f (T, B)\) gravity with observational constraints. Universe 6(2), 34 (2020). https://doi.org/10.3390/universe6020034. arXiv:2002.08183 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  71. Bahamonde, S., Golovnev, A., Guzmán, M.-J., Said, J.L., Pfeifer, C.: Black holes in f(T, B) gravity: exact and perturbed solutions. JCAP 01(01), 037 (2022). https://doi.org/10.1088/1475-7516/2022/01/037. arXiv:2110.04087 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  72. Bahamonde, S., Levi Said, J., Zubair, M.: Solar system tests in modified teleparallel gravity. JCAP 10, 024 (2020). https://doi.org/10.1088/1475-7516/2020/10/024. arXiv:2006.06750 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  73. Bahamonde, S., Dialektopoulos, K.F., Gakis, V., Levi Said, J.: Reviving Horndeski theory using teleparallel gravity after GW170817. Phys. Rev. D 101(8), 084060 (2020). https://doi.org/10.1103/PhysRevD.101.084060. arXiv:1907.10057 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  74. Capozziello, S., Caruana, M., Levi Said, J., Sultana, J.: Ghost and Laplacian instabilities in teleparallel Horndeski gravity. JCAP 03, 060 (2023). https://doi.org/10.1088/1475-7516/2023/03/060. arXiv:2301.04457 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  75. Dialektopoulos, K.F., Said, J.L., Oikonomopoulou, Z.: Classification of teleparallel Horndeski cosmology via Noether symmetries. Eur. Phys. J. C 82(3), 259 (2022). https://doi.org/10.1140/epjc/s10052-022-10201-7. arXiv:2112.15045 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  76. Bernardo, R.C., Said, J.L., Caruana, M., Appleby, S.: Well-tempered Minkowski solutions in teleparallel Horndeski theory. Class. Quant. Grav. 39(1), 015013 (2022). https://doi.org/10.1088/1361-6382/ac36e4. arXiv:2108.02500 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  77. Bernardo, R.C., Said, J.L., Caruana, M., Appleby, S.: Well-tempered teleparallel Horndeski cosmology: a teleparallel variation to the cosmological constant problem. JCAP 10, 078 (2021). https://doi.org/10.1088/1475-7516/2021/10/078. arXiv:2107.08762 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  78. Bahamonde, S., Caruana, M., Dialektopoulos, K.F., Gakis, V., Hohmann, M., Levi Said, J., Saridakis, E.N., Sultana, J.: Gravitational-wave propagation and polarizations in the teleparallel analog of Horndeski gravity. Phys. Rev. D 104(8), 084082 (2021). https://doi.org/10.1103/PhysRevD.104.084082. arXiv:2105.13243 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  79. Bahamonde, S., Dialektopoulos, K.F., Hohmann, M., Levi Said, J.: Post-Newtonian limit of Teleparallel Horndeski gravity. Class. Quant. Grav. 38(2), 025006 (2020). https://doi.org/10.1088/1361-6382/abc441. arXiv:2003.11554 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  80. Capozziello, S., De Laurentis, M., Dialektopoulos, K.F.: Noether symmetries in Gauss–Bonnet-teleparallel cosmology. Eur. Phys. J. C 76(11), 629 (2016). https://doi.org/10.1140/epjc/s10052-016-4491-0. arXiv:1609.09289 [gr-qc]

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Bajardi, F., Blixt, D., Capozziello, S.: The Gauss–Bonnet topological scalar in the Geometric Trinity of Gravity (2023). arXiv:2308.03632 [gr-qc]

  82. Beltrán Jiménez, J., Golovnev, A., Koivisto, T., Veermäe, H.: Minkowski space in \(f(T)\) gravity. Phys. Rev. D 103(2), 024054 (2021). https://doi.org/10.1103/PhysRevD.103.024054. arXiv:2004.07536 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  83. Capozziello, S., Luongo, O., Saridakis, E.N.: Transition redshift in \(f(T)\) cosmology and observational constraints. Phys. Rev. D 91(12), 124037 (2015). https://doi.org/10.1103/PhysRevD.91.124037. arXiv:1503.02832 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  84. Capozziello, S., D’Agostino, R., Luongo, O.: Model-independent reconstruction of \(f(T)\) teleparallel cosmology. Gen. Rel. Grav. 49(11), 141 (2017). https://doi.org/10.1007/s10714-017-2304-x. arXiv:1706.02962 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  85. Capozziello, S., Lambiase, G., Saridakis, E.N.: Constraining f(T) teleparallel gravity by Big Bang Nucleosynthesis. Eur. Phys. J. C 77(9), 576 (2017). https://doi.org/10.1140/epjc/s10052-017-5143-8. arXiv:1702.07952 [astro-ph.CO]

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Benetti, M., Capozziello, S., Lambiase, G.: Updating constraints on f(T) teleparallel cosmology and the consistency with Big Bang Nucleosynthesis. Mon. Not. R. Astron. Soc. 500(2), 1795–1805 (2020). https://doi.org/10.1093/mnras/staa3368. arXiv:2006.15335 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  87. Zheng, R., Huang, Q.-G.: Growth factor in \(f(T)\) gravity. JCAP 03, 002 (2011). https://doi.org/10.1088/1475-7516/2011/03/002. arXiv:1010.3512 [gr-qc]

    Article  ADS  Google Scholar 

  88. Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, 6 (2020). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)]

    Article  CAS  Google Scholar 

  89. Heymans, C., et al.: KiDS-1000 Cosmology: multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astron. Astrophys. 646, 140 (2021). https://doi.org/10.1051/0004-6361/202039063. arXiv:2007.15632 [astro-ph.CO]

    Article  Google Scholar 

  90. Abbott, T.M.C., et al.: Dark Energy Survey Year 3 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 105(2), 023520 (2022). https://doi.org/10.1103/PhysRevD.105.023520. arXiv:2105.13549 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  91. Dalal, R., et al.: Hyper suprime-cam year 3 results: cosmology from cosmic shear power spectra (2023). arXiv:2304.00701 [astro-ph.CO]

  92. Farrugia, G., Levi Said, J.: Growth factor in \(f(T,\cal{T} )\) gravity. Phys. Rev. D 94(12), 124004 (2016). https://doi.org/10.1103/PhysRevD.94.124004. arXiv:1612.00974 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  93. Misner, C.W., Thorne, K.S., Thorne, K.S., Wheeler, J.A., Freeman, W.H., Company: Gravitation. Gravitation, vol. pt. 3. W. H. Freeman, San Francisco (1973)

  94. Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976). https://doi.org/10.1103/RevModPhys.48.393

    Article  ADS  MathSciNet  Google Scholar 

  95. Krššák, M., Saridakis, E.N.: The covariant formulation of f(T) gravity. Class. Quant. Grav. 33(11), 115009 (2016). https://doi.org/10.1088/0264-9381/33/11/115009. arXiv:1510.08432 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  96. Weitzenböck, R.: Invariantentheorie. P. Noordhoff, Groningen (1923)

    Google Scholar 

  97. Aldrovandi, R., Barros, P.B., Pereira, J.G.: Spin and anholonomy in general relativity (2004). arXiv:gr-qc/0402022

  98. Nesseris, S., Basilakos, S., Saridakis, E.N., Perivolaropoulos, L.: Viable \(f(T)\) models are practically indistinguishable from \(\Lambda \)CDM. Phys. Rev. D 88, 103010 (2013). https://doi.org/10.1103/PhysRevD.88.103010. arXiv:1308.6142 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  99. Koivisto, T., Hohmann, M., Marzola, L.: Axiomatic derivation of coincident general relativity and its premetric extension. Phys. Rev. D 103(6), 064041 (2021). https://doi.org/10.1103/PhysRevD.103.064041. arXiv:1909.10415 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  100. Bahamonde, S., Böhmer, C.G., Wright, M.: Modified teleparallel theories of gravity. Phys. Rev. D 92(10), 104042d (2015). https://doi.org/10.1103/PhysRevD.92.104042. arxiv:1508.05120

    Article  ADS  MathSciNet  CAS  Google Scholar 

  101. Capozziello, S., Capriolo, M., Caso, L.: Weak field limit and gravitational waves in \(f(T, B)\) teleparallel gravity. Eur. Phys. J. C 80(2), 156 (2020). https://doi.org/10.1140/epjc/s10052-020-7737-9. arXiv:1912.12469 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  102. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric affine gauge theory of gravity: Field equations, noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995). https://doi.org/10.1016/0370-1573(94)00111-F. arXiv:gr-qc/9402012

    Article  ADS  MathSciNet  Google Scholar 

  103. Beltrán Jiménez, J., Heisenberg, L., Koivisto, T.S.: The geometrical trinity of gravity. Universe 5(7), 173 (2019). https://doi.org/10.3390/universe5070173. arXiv:1903.06830 [hep-th]

    Article  ADS  Google Scholar 

  104. Bahamonde, S., Capozziello, S.: Noether symmetry approach in \(f(T, B)\) teleparallel cosmology. Eur. Phys. J. C 77(2), 107 (2017). https://doi.org/10.1140/epjc/s10052-017-4677-0. arXiv:1612.01299 [gr-qc]

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971). https://doi.org/10.1063/1.1665613

    Article  ADS  MathSciNet  Google Scholar 

  106. Gonzalez, P.A., Vasquez, Y.: Teleparallel equivalent of lovelock gravity. Phys. Rev. D 92(12), 124023 (2015). https://doi.org/10.1103/PhysRevD.92.124023. arXiv:1508.01174 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  107. Bahamonde, S., Dialektopoulos, K.F., Levi Said, J.: Can Horndeski theory be recast using teleparallel gravity? Phys. Rev. D 100(6), 064018 (2019). https://doi.org/10.1103/PhysRevD.100.064018. arXiv:1904.10791 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  108. Ortín, T.: Gravity and Strings. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511616563

    Book  Google Scholar 

  109. Hohmann, M.: General cosmological perturbations in teleparallel gravity. Eur. Phys. J. Plus 136(1), 65 (2021). https://doi.org/10.1140/epjp/s13360-020-00969-6. arXiv:2011.02491 [gr-qc]

    Article  Google Scholar 

  110. Golovnev, A., Koivisto, T.: Cosmological perturbations in modified teleparallel gravity models. JCAP 11, 012 (2018). https://doi.org/10.1088/1475-7516/2018/11/012. arXiv:1808.05565 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  111. Dodelson, S.: Modern Cosmology. Academic Press, Amsterdam (2003)

    Google Scholar 

  112. Cruz-Dombriz, A., Dobado, A., Maroto, A.L.: On the evolution of density perturbations in f(R) theories of gravity. Phys. Rev. D 77, 123515 (2008). https://doi.org/10.1103/PhysRevD.77.123515. arXiv:0802.2999 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  113. Tsujikawa, S.: Matter density perturbations and effective gravitational constant in modified gravity models of dark energy. Phys. Rev. D 76, 023514 (2007). https://doi.org/10.1103/PhysRevD.76.023514. arXiv:0705.1032 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  114. De Felice, A., Tsujikawa, S.: F(R) theories. Living Rev. Rel. 13, 3 (2010). https://doi.org/10.12942/lrr-2010-3. arXiv:1002.4928 [gr-qc]

    Article  Google Scholar 

  115. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton Series in Physics. Princeton University Press, Princeton (1993)

    Google Scholar 

  116. Polarski, D., Gannouji, R.: On the growth of linear perturbations. Phys. Lett. B 660, 439–443 (2008). https://doi.org/10.1016/j.physletb.2008.01.032. arXiv:0710.1510 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  117. Pouri, A., Basilakos, S., Plionis, M.: Precision growth index using the clustering of cosmic structures and growth data. JCAP 08, 042 (2014). https://doi.org/10.1088/1475-7516/2014/08/042. arXiv:1402.0964 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  118. Dossett, J., Ishak, M., Moldenhauer, J., Gong, Y., Wang, A., Gong, Y.: Constraints on growth index parameters from current and future observations. JCAP 04, 022 (2010). https://doi.org/10.1088/1475-7516/2010/04/022. arXiv:1004.3086 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  119. Basilakos, S.: Linear growth in power law \(f(T)\) gravity. Phys. Rev. D 93(8), 083007 (2016). https://doi.org/10.1103/PhysRevD.93.083007. arXiv:1604.00264 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  120. Dvali, G.R., Gabadadze, G., Porrati, M.: 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 485, 208–214 (2000). https://doi.org/10.1016/S0370-2693(00)00669-9. arXiv:hep-th/0005016

    Article  ADS  MathSciNet  CAS  Google Scholar 

  121. Briffa, R., Escamilla-Rivera, C., Said Levi, J., Mifsud, J., Pullicino, N.L.: Impact of \(H_0\) priors on \(f(T)\) late time cosmology. Eur. Phys. J. Plus 137(5), 532 (2022). https://doi.org/10.1140/epjp/s13360-022-02725-4. arXiv:2108.03853 [astro-ph.CO]

    Article  Google Scholar 

  122. Jimenez, R., Loeb, A.: Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573, 37–42 (2002). https://doi.org/10.1086/340549. arXiv:astro-ph/0106145

    Article  ADS  Google Scholar 

  123. Jimenez, R., Verde, L., Treu, T., Stern, D.: Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB. Astrophys. J. 593, 622–629 (2003). https://doi.org/10.1086/376595. arXiv:astro-ph/0302560

    Article  ADS  CAS  Google Scholar 

  124. Zhang, C., Zhang, H., Yuan, S., Zhang, T.-J., Sun, Y.-C.: Four new observational \(H(z)\) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 14(10), 1221–1233 (2014). https://doi.org/10.1088/1674-4527/14/10/002. arXiv:1207.4541 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  125. Moresco, M., Pozzetti, L., Cimatti, A., Jimenez, R., Maraston, C., Verde, L., Thomas, D., Citro, A., Tojeiro, R., Wilkinson, D.: A 6% measurement of the Hubble parameter at \(z\sim 0.45\): direct evidence of the epoch of cosmic re-acceleration. JCAP 05, 014 (2016). https://doi.org/10.1088/1475-7516/2016/05/014. arXiv:1601.01701 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  126. Simon, J., Verde, L., Jimenez, R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001. arXiv:astro-ph/0412269

    Article  ADS  CAS  Google Scholar 

  127. Moresco, M., et al.: Improved constraints on the expansion rate of the Universe up to z 1.1 from the spectroscopic evolution of cosmic chronometers. JCAP 08, 006 (2012). https://doi.org/10.1088/1475-7516/2012/08/006. arXiv:1201.3609 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  128. Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A.: Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements. JCAP 02, 008 (2010). https://doi.org/10.1088/1475-7516/2010/02/008. arXiv:0907.3149 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  129. Moresco, M.: Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z \(\sim \) 2. Mon. Not. R. Astron. Soc. 450(1), 16–20 (2015). https://doi.org/10.1093/mnrasl/slv037. arXiv:1503.01116 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  130. Scolnic, D.M., et al.: The complete light-curve sample of spectroscopically confirmed SNe Ia from pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859(2), 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb. arXiv:1710.00845 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  131. Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M.: The clustering of the SDSS DR7 main Galaxy sample–I. A 4 per cent distance measure at \(z = 0.15\). Mon. Not. R. Astron. Soc. 449(1), 835–847 (2015). https://doi.org/10.1093/mnras/stv154. arXiv:1409.3242 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  132. Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Saunders, W., Watson, F.: The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 416, 3017–3032 (2011). https://doi.org/10.1111/j.1365-2966.2011.19250.x. arXiv:1106.3366 [astro-ph.CO]

    Article  ADS  Google Scholar 

  133. Bourboux, H., et al.: Baryon acoustic oscillations from the complete SDSS-III Ly\(\alpha \)-quasar cross-correlation function at \(z=2.4\). Astron. Astrophys. 608, 130 (2017). https://doi.org/10.1051/0004-6361/201731731. arXiv:1708.02225 [astro-ph.CO]

    Article  CAS  Google Scholar 

  134. Alam, S., et al.: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470(3), 2617–2652 (2017). https://doi.org/10.1093/mnras/stx721. arXiv:1607.03155 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  135. Zhao, G.-B., et al.: The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. R. Astron. Soc. 482(3), 3497–3513 (2019). https://doi.org/10.1093/mnras/sty2845. arXiv:1801.03043 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  136. Freedman, W.L., et al.: The Carnegie-Chicago Hubble program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch. Astrophys. J. 882, 34 (2019). https://doi.org/10.3847/1538-4357/ab2f73. arXiv:1907.05922 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  137. Amendola, L., Polarski, D., Tsujikawa, S.: Are f(R) dark energy models cosmologically viable? Phys. Rev. Lett. 98, 131302 (2007). https://doi.org/10.1103/PhysRevLett.98.131302. arXiv:astro-ph/0603703

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  138. Farrugia, G., Levi Said, J., Ruggiero, M.L.: Solar system tests in f(T) gravity. Phys. Rev. D 93(10), 104034 (2016). https://doi.org/10.1103/PhysRevD.93.104034. arXiv:1605.07614 [gr-qc]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  139. Iorio, L., Saridakis, E.N.: Solar system constraints on f(T) gravity. Mon. Not. R. Astron. Soc. 427, 1555 (2012). https://doi.org/10.1111/j.1365-2966.2012.21995.x. arXiv:1203.5781 [gr-qc]

    Article  ADS  Google Scholar 

  140. Ruggiero, M.L., Radicella, N.: Weak-field spherically symmetric solutions in \(f(T)\) gravity. Phys. Rev. D 91, 104014 (2015). https://doi.org/10.1103/PhysRevD.91.104014. arXiv:1501.02198 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  141. Deng, X.-M.: Probing f(T) gravity with gravitational time advancement. Class. Quant. Grav. 35(17), 175013 (2018). https://doi.org/10.1088/1361-6382/aad391

    Article  ADS  MathSciNet  CAS  Google Scholar 

  142. Finch, A., Said, J.L.: Galactic rotation dynamics in f(T) gravity. Eur. Phys. J. C 78(7), 560 (2018). https://doi.org/10.1140/epjc/s10052-018-6028-1. arXiv:1806.09677 [astro-ph.GA]

    Article  ADS  CAS  Google Scholar 

  143. Farrugia, G., Levi Said, J.: Stability of the flat FLRW metric in \(f(T)\) gravity. Phys. Rev. D 94(12), 124054 (2016). https://doi.org/10.1103/PhysRevD.94.124054. arXiv:1701.00134 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  144. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155–228 (2012). https://doi.org/10.1007/s10509-012-1181-8. arXiv:1205.3421 [gr-qc]

    Article  ADS  Google Scholar 

  145. Deffayet, C.: Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199–208 (2001). https://doi.org/10.1016/S0370-2693(01)00160-5. arXiv:hep-th/0010186

    Article  ADS  CAS  Google Scholar 

  146. Bamba, K., Geng, C.-Q., Lee, C.-C., Luo, L.-W.: Equation of state for dark energy in \(f(T)\) gravity. JCAP 01, 021 (2011). https://doi.org/10.1088/1475-7516/2011/01/021. arXiv:1011.0508 [astro-ph.CO]

    Article  ADS  Google Scholar 

  147. Gannouji, R., Moraes, B., Polarski, D.: The growth of matter perturbations in f(R) models. In: 12th Marcel Grossmann Meeting on General Relativity, pp. 1274–1276 (2009). https://doi.org/10.1142/9789814374552_018

  148. Tsujikawa, S., Gannouji, R., Moraes, B., Polarski, D.: The dispersion of growth of matter perturbations in f(R) gravity. Phys. Rev. D 80, 084044 (2009). https://doi.org/10.1103/PhysRevD.80.084044. arXiv:0908.2669 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  149. Basilakos, S., Solà, J.: Growth index of matter perturbations in running vacuum models. Phys. Rev. D 92(12), 123501 (2015). https://doi.org/10.1103/PhysRevD.92.123501. arXiv:1509.06732 [astro-ph.CO]

    Article  ADS  CAS  Google Scholar 

  150. Wei, H.: Growth index of DGP model and current growth rate data. Phys. Lett. B 664, 1–6 (2008). https://doi.org/10.1016/j.physletb.2008.04.060. arXiv:0802.4122 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  151. Fu, X.-Y., Wu, P.-X., Yu, H.-W.: The growth of linear perturbations in the DGP model. Phys. Lett. B 677, 12–15 (2009). https://doi.org/10.1016/j.physletb.2009.05.007. arXiv:0905.1735 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  152. Gong, Y.: The growth factor parameterization and modified gravity. Phys. Rev. D 78, 123010 (2008). https://doi.org/10.1103/PhysRevD.78.123010. arXiv:0808.1316 [astro-ph]

    Article  ADS  CAS  Google Scholar 

  153. Linder, E.V., Cahn, R.N.: Parameterized beyond-Einstein growth. Astropart. Phys. 28, 481–488 (2007). https://doi.org/10.1016/j.astropartphys.2007.09.003. arXiv:astro-ph/0701317

    Article  ADS  Google Scholar 

  154. Basilakos, S., Stavrinos, P.: Cosmological equivalence between the Finsler-Randers space-time and the DGP gravity model. Phys. Rev. D 87(4), 043506 (2013). https://doi.org/10.1103/PhysRevD.87.043506. arXiv:1301.4327 [gr-qc]

    Article  ADS  CAS  Google Scholar 

  155. Wu, P., Yu, H.W.: \(f(T)\) models with phantom divide line crossing. Eur. Phys. J. C 71, 1552 (2011). https://doi.org/10.1140/epjc/s10052-011-1552-2. arXiv:1008.3669 [gr-qc]

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The Authors would like to acknowledge funding from “The Malta Council for Science and Technology” in project IPAS-2020-007. This paper is based upon work from COST Action CA21136 Addressing observational tensions in cosmology with systematics and fundamental physics (CosmoVerse) supported by COST (European Cooperation in Science and Technology). SC acknowledges the Istituto Italiano di Fisica Nucleare (INFN) iniziativa specifica QGSKY. MC acknowledges funding by the Tertiary Education Scholarship Scheme (TESS, Malta). JLS would also like to acknowledge funding from “The Malta Council for Science and Technology” as part of the “FUSION R &I: Research Excellence Programme” REP-2023-019 (CosmoLearn) Project. JLS would also like to acknowledge funding from “The Malta Council for Science and Technology” in project IPAS-2023-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Caruana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Field equations functions

Appendix A: Field equations functions

The system of first order perturbation field Eqs. (3337) can be simplified using the continuity equation  (43), velocity equation (44), and gauge invariant comoving fractional matter perturbation (41) such that each component can be expressed as a function of variables in their Fourier transform form and their higher order time derivatives:

$$\begin{aligned} {W_{A}}^{\mu }{_{\text {components}}} = \mathcal {W}_{1}(\varphi , \dot{\varphi },\psi ,\dot{\psi },\ddot{\psi }, \omega , \dot{\omega }, \delta _{m}, \dot{\delta }_{m})\,. \end{aligned}$$
(A1)

While the off-diagonal spatial-spatial component, given by Eq. (36), provides an expression of \(\omega \) in terms of the other variables, the rest of the components are reduced to the set of Eqs. (4750) for which functions \(\mathcal {F}_{i}\) (\(i \in [1,4]\)) are given by

$$\begin{aligned} \mathcal {F}_{1}&= \frac{2 \frac{k^{4}}{a^{4}} H^{2} (1+f_{T} -36 \frac{a^{2}}{k^{2}} H^{2} \dot{H}f_{TT}) }{\dot{H} \left( \frac{k^{2}}{a^{2}} - 3\dot{H}\right) } \varphi \nonumber \\&\quad + \frac{2 \frac{k^{2}}{a^{2}} (1+f_{T}) (- H^{2} + \dot{H}) }{\dot{H}} \psi + \kappa ^{2} \rho \delta _{m} \nonumber \\&\quad + \frac{6 H \left( 1+f_{T} - 12 H^{2} f_{TT}\right) }{\frac{k^{2}}{a^{2}} - 3 \dot{H}} \left( \tfrac{k^{2}}{a^{2}} \dot{\psi } - \dot{H} \dot{\delta }_{m}\right) \,, \end{aligned}$$
(A2)
$$\begin{aligned} \mathcal {F}_{2}&= \frac{6 \frac{k^{2}}{a^{2}} (1+f_{T} - 36 \frac{a^{2}}{k^{2}} H^{2} \dot{H} f_{TT})}{\frac{k^{2}}{a^{2}} - 3 \dot{H}} ( H \varphi + \dot{\psi }) \nonumber \\&\quad -72 H \dot{H} f_{TT} \psi -\frac{6 \dot{H} (1+f_{T} - 12 H^{2} f_{TT})}{\frac{k^2}{a^2} - 3 \dot{H}} \dot{\delta }_{m}\,, \end{aligned}$$
(A3)
$$\begin{aligned} \mathcal {F}_{3}&= -\frac{2 \frac{k^2}{a^2} H (1+f_{T})}{ \dot{H}} \psi \nonumber \\&\quad +\frac{2 \frac{k^{4}}{a^4} H (1 + f_{T} - 36 \frac{a^2}{k^2} H^2 f_{TT})}{\dot{H} (\frac{k^2}{a^2} - 3 \dot{H})} \varphi \nonumber \\&\quad + \frac{6 (1 + f_{T} - 12 H^2 f_{TT} ) }{ \frac{k^{2}}{a^2} - 3 \dot{H} } \left( \frac{k^2}{a^2}\dot{\psi } - \dot{H} \dot{\delta }_{m} \right) \,, \end{aligned}$$
(A4)
$$\begin{aligned} \mathcal {F}_{4}&=0 \frac{k^2}{a^2} \left( (1 + f_{T})\left( 1 + \frac{H^2}{\dot{H}} - \frac{H \ddot{H}}{\dot{H}^{2}}\right) \right. \nonumber \\&\quad \left. - 12 H^{2} f_{TT} \right) (\psi - \varphi ) \nonumber \\&\quad + \left( \frac{k^2}{a^2} \frac{H}{\dot{H}} (1+f_{T}) + 3 H (1 + f_{T} - 12 H^2 f_{TT}) \right) \left( \dot{\psi } -\dot{\varphi } \right) \nonumber \\&\quad - \left( 6 \dot{H} (1+f_{T}) + 9 H^2 (1 + f_{T} - 20 \dot{H} f_{TT}) - 108 H^{4}(f_{TT} - 4 \dot{H} f_{TTT}) \right) \varphi \nonumber \\&\quad - 12 H \left( 1 + f_{T} - (12 H^{2} + 9 \dot{H}) f_{TT} + 36 H^2 \dot{H} f_{TTT}\right) \dot{\psi } - 3 (1 + f_{T}\nonumber \\&\quad - 12 H^2 f_{TT}) \ddot{\psi }\,. \end{aligned}$$
(A5)

Hence, equations for the zeroth order derivative variables can be obtained in terms of higher-order derivatives and \(\delta _{m}\). One choice is that of deriving the expressions by simultaneously solving Eqs. (48) (\(\mathcal {F}_{2}\)) and (49) (\(\mathcal {F}_{3}\)) such that

$$\begin{aligned} \varphi :=\mathcal {G}_{1}&= \frac{ \dot{H} (1 + f_{T} - 36 \frac{a^2}{k^2} \dot{H}^{2} f_{TT}) (1 + f_{T} - 12 H^2 f_{TT})}{ \frac{k^2}{a^2} H (1 + f_{T} - 12 \dot{H} f_{TT}) [ 1+f_{T} - 36 \frac{a^2}{k^2} H^2 \dot{H} f_{TT} ]} \dot{\delta }_{m} \nonumber \\&\qquad - \left( \frac{ (1 + f_{T}) }{ H (1 + f_{T} - 12 \dot{H} f_{TT})} - \frac{ 36 \frac{a^2}{k^2} \dot{H}^2 f_{TT} (1 + f_{T} - 12 H^2 f_{TT}) }{ H (1 + f_{T} - 12 \dot{H} f_{TT})( 1 + f_{T} - 36 \frac{a^2}{k^2} H^2 \dot{H} f_{TT})} \right) \dot{\psi }\,, \end{aligned}$$
(A6)
$$\begin{aligned} \psi :=\mathcal {G}_{2}&= -\frac{1 + f_{T}}{H (1 + f_{T} - 12 \dot{H} f_{TT})} \dot{\psi } + \frac{\frac{a^2}{k^2} \dot{H} (1 + f_{T} - 12 H^2 f_{TT}) }{H (1 + f_{T} - 12 \dot{H} f_{TT})} \dot{\delta }_{m}\,. \end{aligned}$$
(A7)

The rest of the field equations, along with the continuity and velocity equations and with their time derivatives, are used to express the time derivatives of variables in terms of higher-order derivatives and \(\delta _{m}\) to ultimately obtain an equation as a function of \(\delta _{m}\) and its derivatives:

$$\begin{aligned} 0 = \mathcal {W}_{2}(\delta _{m}, \dot{\delta }_{m},\ddot{\delta }_{m})\,, \end{aligned}$$
(A8)

resulting in the Mészáros equation (59). It should be noted that these equations are derived without assuming the subhorizon limit \(k \gg aH\), such that we have a more general Mészáros equation when considering the growth of CDM.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capozziello, S., Caruana, M., Farrugia, G. et al. Cosmic growth in f(T) teleparallel gravity. Gen Relativ Gravit 56, 27 (2024). https://doi.org/10.1007/s10714-024-03204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03204-0

Keywords

Navigation