Skip to main content
Log in

Holocene paleoenvironmental change based on diatom records from the continental shelf of the Chukchi Sea in the Arctic Ocean

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Diatom assemblages from ARA2B-1A taken in the Chukchi Sea shelf were analyzed to reconstruct paleoenvironmental changes during the last 10 ka BP. The main factors controlling the distribution of diatom in the Chukchi Sea are the relatively warm and nutrient-rich Pacific water inflow after the opening of the Bering Strait. Based on the selected diatoms, three diatom assemblage zones are identified. The diatom assemblage zone I shows a rare or very low abundance, which corresponds to the early Holocene (10–8 ka BP). The diatom assemblage zone II corresponds to the mid-to-late Holocene (8–2 ka BP). It is a seasonal sea-ice environment with relatively abundant diatom valves and Chaetoceors resting spores, as well as sea-ice species, cold-water species, coastal species, and upwelling species. The diatom assemblage zone III corresponds to the late Holocene (2–0 ka BP), and the the sea-ice species generally decreased compared to zone II, while the coastal species Paralia sulcata occurred abundantly. In particular, the Thalassiosira antarctica, a cold-water species, increased distinctly during this time interval. After ∼2 ka BP, T. antarctica rapidly increased while sea-ice species rarely appeared, indicating limited open-marine environments. In particular, after 1 ka BP, T. antarctica decreased while the sea-ice species increased, suggesting that the sea-ice increased again before the recent global warming of the Arctic, the late Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrantes, F., Lopes, C., Mix, A., and Pisias, N., 2007, Diatoms in Southeast Pacific surface sediments reflect environmental properties. Quaternary Science Reviews, 26, 155–169.

    Article  ADS  Google Scholar 

  • Arrigo, K.R. and van Dijken, G.L., 2011, Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research, 116, C09011.

    Article  ADS  Google Scholar 

  • Bai, Y., Sicrec, M.-A., Chen, J., Klein, V., Jin, H., Ren, J., Li, H., Xue, B., Ji, Z., Zhuang, Y., and Zhao, M., 2019, Seasonal and spatial variability of sea ice and phytoplankton biomarker flux in the Chukchi Sea (western Arctic Ocean). Progress in Oceanography, 171, 22–37.

    Article  ADS  Google Scholar 

  • Bak, Y.S. and Lee, Y.U., 2017, Late Quaternary paleoclimatic change in the Ulleung Basin, East Sea, Korea. Acta Geologica Sinica, 91, 263–269.

    Article  Google Scholar 

  • Bjørklun, K.R. and Kruglikova, S.B., 2003, Polycystine radiolarians in surface sediments in the Arctic Ocean basins and marginal seas. Marine Micropaleontology, 49, 231–273.

    Article  ADS  Google Scholar 

  • Coachman, L.K. and Barnes, C.A., 1961, The contribution of Bering Sea water to the Arctic Ocean. Arctic, 14, 147–161.

    Article  Google Scholar 

  • Comiso, J.C., 2012, Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25, 1176–1193.

    Article  ADS  Google Scholar 

  • Comiso, J.C. and Nishio, F., 2008, Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research, 113, C02S07. https://doi.org/10.1029/2007JC004257

    Article  Google Scholar 

  • Cremer, H., 1999, Distribution patterns of diatom surface sediment assemblages in the Laptev Sea (Arctic Ocean). Marine Micropaleontology, 38, 39–67.

    Article  ADS  Google Scholar 

  • Harada, N., 2016, Review: potential catastrophic reduction of sea ice in the western Arctic Ocean: its impact on biogeochemical cycles and marine ecosystems. Global and Planetary Change, 136, 1–17.

    Article  ADS  Google Scholar 

  • Hu, A., Meehl, G.A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., and Wu, B., 2012, Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences of the United States of America, 109, 6417–6422. https://doi.org/10.1073/pnas.1116014109

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobbson, M., Grantz, A., Kristoffersen, Y., Macnab, R., MacDonald, R.W., Sakshaug, E., Stein, R., and Jokat, W., 2004, The Arctic Ocean: boundary conditions and background information. In: Stein, R. and Macdonald, R.W. (eds.), The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin, Germany, p. 1–32. https://doi.org/10.1007/978-3-642-18912-8_1

    Google Scholar 

  • Jakobbson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H.W., and Johnson, P., 2008, An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35, L07602. https://doi.org/10.1029/2008GL033520

    ADS  Google Scholar 

  • Jakobbson, M., Mayer, L., Coakley, B., Dowdeswell, J.A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H.W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J.V., Hall, J.K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S.V., Pedrosa, M.T., Travaglini, P.G., and Weatherall, P., 2012, The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophysical Research Letters, 39, L12609. https://doi.org/10.1029/2012GL052219

    ADS  Google Scholar 

  • Jakobsson, M., Pearce, C., Cronin, T.M., Backman, J., Anderson, L.G., Barrientos, N., Björk, G., Coxall, H., de Boer, A., Mayer, L.A., Mörth, C-M., Nilsson, J., Rattray, J.E., Stranne, C., Semiletov, I., and O’Regan, M., 2017, Post-glacial flooding of the Bering land bridge dated to 11 ka BP based on new geophysical and sediment records. Climate of the Past, 13, 991–1005.

    Article  ADS  Google Scholar 

  • Justwan, A. and Koç, N., 2008, A diatom based transfer function for reconstructing sea ice concentrations in the North Atlantic. Marine Micropaleontology, 66, 264–278.

    Article  ADS  Google Scholar 

  • Krawczyk, D.W., Witkowski, A., Moros, M., Lloyd, J.M., Høyer, J.L., Miettinen, A., and Kuijpers, A., 2016, Quantitative reconstruction of Holocene sea ice and surface temperature off West Greenland from the first regional diatom data set. Paleoceanography, 32, 18–40.

    Article  ADS  Google Scholar 

  • Lacour, T., Lariviere, J., Ferland, J., Bruyant, F., Lavaud, J., and Babin, M., 2018, The role of sustained photoprotective non-photochemical quenching in low temperature and high light acclimation in the bloom-forming Arctic diatom Thalassiosira gravida. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00354

  • Legendre, L., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Horner, R., Hoshiai, T., Melnikov, I.A., Reeburgh, W.S., Spindler, M., and Sullivan, C.W., 1992, Ecology of sea ice biota. 2. Global significance. Polar Biology, 12, 429–444.

    Article  Google Scholar 

  • Manley, W.F., 2002, Postglacial flooding of the Bering Land Bridge: a geospatial animation. INSTAAR, University of Colorado. https://instaar.colorado.edu/QGISL/bering_land_bridge [Accessed on 10 January 2024].

  • Miettinen, A., 2018, Diatoms in Arctic regions: potential tools to decipher environmental changes. Polar Science, 8, 220–226.

    Article  ADS  Google Scholar 

  • Miettinen, A., Divine, D.V., Husum, K., Koç, N., and Jennings, A., 2015. Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly. Paleoceanography, 30, 1675–1674.

    Article  Google Scholar 

  • Racine, C., Bonnin, J., Nam, S-I., Giraudeau, J., Biguenet, M., Dessandier, P-A., and Kim, J-H., 2018, Diatribution of living benthic foraminifera in the northern Chukchi Sea. Arktos, 4, 1–15. https://doi.org/10.1007/s41063-018-0062-y

    Article  Google Scholar 

  • Ren, J., Gersonde, R., Esper, O., and Sancetta, C., 2014, Diatom distributions in North pacific surface sediments and their relationship to modern environmental variables. Palaeogeography, Palaeoclimatology, Palaeoecology, 402, 81–103.

    Article  ADS  Google Scholar 

  • Scherer, R.P., 1994, A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12, 171–180.

    Article  ADS  Google Scholar 

  • Serreze, M.C., Crawford, A.D., Stroeve, J.C., Barrett, A.P., and Woodgate, R.A., 2016, Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. Journal of Geophysical Research: Oceans, 121. https://doi.org/10.1002/2016JC011977

  • Sha, L., Jiang, H., Seidenkrantz, M-S., Knudsen, K.L., Olsen, J., Kuijpers, A., and Liu, Y., 2014, A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000 yr. Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 66–79.

    Article  ADS  Google Scholar 

  • Sha, L., Jiang, H., Seidenkrantz, M-S., Muscheler, R., Zhang, X., Knudsen, M.F., Olsen, J., Knudsen, K.L., and Zhang, W., 2016, Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quaternary Science Reviews, 131, 148–156. https://doi.org/10.1016/j.quascirev.2015.11.002

    Article  ADS  Google Scholar 

  • Sha, L., Jiang, H., Seidenkrantz, M-S., Li, D., Andresen, C.S., Knudsen, K.L., Liu, Y., and Zhao, M., 2017, A record of Holocene sea-ice variability off West Greenland and its potential forcing factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 115–124.

    Article  ADS  Google Scholar 

  • Shimada, K., Carmack, E.C., Hatakeyama, K., and Takizawa, T., 2001, Varieties of shallow temperature maximum waters in the western Canada Basin of the Arctic Ocean. Geophysical Research Letters, 28, 3441–3444.

    Article  ADS  Google Scholar 

  • Stein, R., Fahl, K., Schade, I., Manerung, A., Wassmuth, S., Niessen, F., and Nam, S-I., 2017, Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). Journal of Quaternary Science, 32, 362–379.

    Article  ADS  Google Scholar 

  • Thomas, D.N., Papadimitriou, S., and Michel, C., 2010, Biogeochemistry of sea ice. In: Thomas, D.N. and Dieckmann, G.S. (eds.), Sea Ice (2nd edition). Wiley-Blackwell, Hoboken, USA, p. 425–467. https://doi.org/10.1002/9781444317145.ch12

    Google Scholar 

  • Vernal, A.D., Hillaira-Marcel, C., Rochon, A., Frèchette, B., Henry, M., Solignac, S., and Bonnet, S., 2013, Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews, 79, 111–121.

    Article  ADS  Google Scholar 

  • Vieira, L.H., Achterberg, E.P., Scholten, J., Beck, A.J., Liebetrau, V., Mills, M.M., and Arrigo, K.R., 2019, Benthic fluxes of trace metals in the Chukchi Sea and their transport into the Arctic Ocean. Marine Chemistry, 208, 43–55.

    Article  CAS  Google Scholar 

  • Yamamoto, M., Nam, S-I., Polyak, L., Kobayashi, D., Suzuki, K., and Shimada, K., 2017, Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea. Climate of the Past, 13, 1111–1127.

    Article  ADS  Google Scholar 

  • Zhuang, Y., Jin, H., Li, H., Chen, J., Lin, L., Bai, Y., Ji, Z., Zhang, Y., and Gu, F., 2016, Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer. Continental Shelf Research, 129, 23–32.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We want to thank the captain and crew of RV Araon for excellent collaboration and support during the 2nd Arctic expedition ARA02B in 2011. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1091796). This research was supported by the Korean Ministry of Ocean and Fisheries (KIMST, 20210632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Suk Bak.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, YS., Nam, SI. Holocene paleoenvironmental change based on diatom records from the continental shelf of the Chukchi Sea in the Arctic Ocean. Geosci J 28, 137–144 (2024). https://doi.org/10.1007/s12303-023-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-023-0040-7

Key words

Navigation