Skip to main content
Log in

Agroforestry systems affect soil organic carbon stocks and fractions in deforested landscapes of Amazonia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) is the main component of carbon in terrestrial ecosystems and an indicator of soil quality. The study aimed to investigate the stock and vertical distribution of SOC fractions and the SOC sequestration of different agroforestry systems (AFS) and other land uses in the Colombian Amazon. In each land use (Secondary forest—SF, Natural regeneration—NR, Alley cropping 1—AC1, Alley cropping 2—AC2, Forest plantations 1—FP1, Forest plantations 2—FP2, Crops in forest plantation—CFP, Shade trees for crops—STC, Homegarden—HG, Silvopastoral system—SPS and Pasture—P), four soil pits were made (1 × 1 × 1 m) to collect soil samples to determine SOC concentration by carbon lability fractions (CVL: very labile, CL: labile, CLL: less labile, CNL: non-labile) and bulk density at four depths (0—10, 10–20, 20–40 and 40–100 cm). The mean SOC concentration was 15.3 ± 1.2 g kg−1, with a higher concentration in 0–10 cm (26.1 ± 2.4 g kg−1). The concentration of the different fractions presented the following order CVL > CNL > CL > CLL (7.4 ± 0.3, 4.8 ± 0.2, 2.7 ± 0.1 and 2.1 ± 0.1 g kg−1, respectively). SOC stock was 13.3 to 220.0 Mg C ha−1 in the 0–100 cm layers, where FP1, FP2, AC1 and AC2 showed the highest values (174.0 to 199.0 Mg ha−1). In contrast, HG, P and STC showed the lowest values with 134.0, 116.0 and 96.2 Mg ha−1, respectively. Therefore, and due to the contribution of the most stable carbon fractions in the soil (CLL and CNL), land uses such as AC1 and AC2 presented the highest levels of carbon stability measured by the carbon management index. Therefore, the different land uses with agroforestry systems increased the amount and stability of carbon accumulated in the soil compared to pasture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou Y, Leuschner C, Barus H, Tjoa A, Hertel D (2016) Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS ONE 11:0149949. https://doi.org/10.1371/journal.pone.0149949

    Article  CAS  Google Scholar 

  • Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308(1–2):11–22

    Article  CAS  Google Scholar 

  • Andrade HJ, Segura MA, Canal-Daza DS (2022) Conservation of soil organic carbon in the National Park Santuario de Fauna y Flora Iguaque. Boyacá-Colombia Forests 13:1275. https://doi.org/10.3390/f13081275

    Article  Google Scholar 

  • Babu S, Singh R, Avasthe R, Kumar S, Rathore SS, Singh VK, Ansari MA et al (2023) Soil carbon dynamics under organic farming: impact of tillage and cropping diversity. Ecol Indic 147:109940. https://doi.org/10.1016/j.ecolind.2023.109940

    Article  CAS  Google Scholar 

  • Baradwal H, Ghosh A, Kumar A, Singh PD, Sannagoudar MS, Ahamad S, Singh AK et al (2022) Ecological restoration of degraded lands with alternate land use systems improves soil functionality in semiarid tropical India. Land Degrad Dev 33(7):1076–1087. https://doi.org/10.1002/ldr.4225

    Article  Google Scholar 

  • Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC et al (2011) Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agrofor Syst 81(3):213–220. https://doi.org/10.1007/s10457-010-9300-4

    Article  Google Scholar 

  • Benbi DK, Brar K, Toor AS, Singh P, Singh H (2012) Soil carbon pools under poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-arid India. Nutr Cycl Agroecosystems 92(1):107–118

    Article  CAS  Google Scholar 

  • Beuchle R, Achard F, Bourgoin C, Vancutsem C, Eva HD, Follador M (2021) Deforestation and forest degradation in the Amazon–Status and trends up to year 2020. In: EUR 30727 EN, Publications Office of the European Union, Luxembourg, 2021. ISBN 978-92-76-38352-9, https://doi.org/10.2760/61682, JRC124955

  • Blair GJ, Lefroy RD, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46(7):1459–1466

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed), Methods of soil analysis. Part 1: physical and mineralogical methods. Agronomy monograph, vol 9, 2nd edn. American Society of Agronomy and Soil Society of America, Madison, pp 363–382

  • Chan KY, Booowman A, Oates A (2001) Oxidizable organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci 166:61–67

    Article  CAS  ADS  Google Scholar 

  • Chatterjee N, Nair PR, Nair VD, Viswanath S, Bhattacharjee A (2020) Depth-wise distribution of soil-carbon stock in aggregate-sized fractions under shaded-perennial agroforestry systems in the Western Ghats of Karnataka, India. Agrofor Syst 94:341–358

    Article  Google Scholar 

  • Chaudhary S, Dheri GS, Brar BS (2017) Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Tillage Res 166:59–66

    Article  Google Scholar 

  • Chen C, Liu W, Jiang X, Wu J (2017) Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implications for land use. Geoderma 299:13–24

    Article  CAS  ADS  Google Scholar 

  • de Sousa KF, Detlefsen G, De Melo VFE, Tobar D, Casanoves F (2016) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90:207–218

    Article  Google Scholar 

  • Durán EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P (2020) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecol Indic 117:106550

    Article  Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilization of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34(12):1591–1600

    Article  CAS  ADS  Google Scholar 

  • Fassbender HW, Beer J, Heuveldop J, Imbach A, Enriquez G, Bonnemann A (1991) Ten year balances of organic matter and nutrients in agroforestry systems at CATIE, Costa Rica. For Ecol Manag 4:173–183

    Article  Google Scholar 

  • Frazão LA, Cardoso PHS, Neta MNA, Mota MFC, de Souza ALL, Ribeiro JM, Bicalho TH, Feigl BJ (2021) Carbon and nitrogen stocks and organic matter fractions in the topsoil of traditional and agrisilvicultural systems in the Southeast of Brazil. Soil Res 59(8):794–805. https://doi.org/10.1071/SR20150

    Article  CAS  Google Scholar 

  • Gomes MF, Vasconcelos SS, Viana-Junior AB, Costa ANM, Barros PC, Kato OR, Castellani DC (2021) Oil palm agroforestry shows higher soil permanganate oxidizable carbon than monoculture plantations in Eastern Amazonia. Land Degrad Dev 32(15):4313–4326. https://doi.org/10.1002/ldr.4038

    Article  Google Scholar 

  • González-González A, Clerici N, Quesada B (2021) Growing mining contribution to Colombian deforestation. Environ Res Lett 16(6):064046. https://doi.org/10.1088/1748-9326/abfcf8

    Article  ADS  Google Scholar 

  • Guo J, Wang B, Wang G, Wu Y, Cao F (2018) Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China. CATENA 171:450–459

    Article  CAS  Google Scholar 

  • Hazra KK, Nath CP, Singh U, Praharaj CS, Kumar N, Singh SS, Singh NP (2019) Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration. Geoderma 353:308–319. https://doi.org/10.1016/j.geoderma.2019.06.039

    Article  CAS  ADS  Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Ivezić V, Lorenz K, Lal R (2022) Soil organic carbon in alley cropping systems: a meta-analysis. Sustain 14(3):1296

    Article  Google Scholar 

  • Koutika LS, Marron N, Cardinael R (2023) The contribution of agroforestry systems to improving soil carbon sequestration. In: Rumpel C (ed), Understanding and fostering soil carbon sequestration. Burleigh Dodds Science Publishing, Cambridge, pp. 589-616. (Burleigh Dodds Series in Agricultural Science) ISBN 978-1-78676-969-5. https://doi.org/10.19103/AS.2022.0106.19

  • Lavelle P, Mathieu J, Spain A, Brown G, Fragoso C, Lapied E et al (2022) Soil macroinvertebrate communities: a worldwide assessment. Glob Ecol Biogeogr 7(31):1261–1276. https://doi.org/10.1111/geb.13492

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34(2):443–454. https://doi.org/10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Luo Y, Li Y, Liu S, Yu P (2022) Effects of vegetation succession on soil organic carbon fractions and stability in a karst valley area, Southwest China. Environ Monit Assess 194(8):562. https://doi.org/10.1007/s10661-022-10254-x

    Article  CAS  PubMed  Google Scholar 

  • Magalhães TM (2023) Trees in agricultural landscapes maintain soil organic carbon following miombo woodland conversion to shifting cultivation. Geoderma 429:116241

    Article  ADS  Google Scholar 

  • Maia SMF, Xavier FAS, Oliveira TS, Mendonça ES, Araújo FJA (2007) Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agrofor Syst 71(2):127–138. https://doi.org/10.1007/s10457-007-9063-8

    Article  Google Scholar 

  • Mao R, Zeng DH, Li LJ, Hu YL (2012) Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China. Environ Monit Assess 184(11):6845–6853. https://doi.org/10.1007/s10661-011-2462-3

    Article  CAS  PubMed  Google Scholar 

  • Moharana PC, Meena RL, Nogiya M, Jena RK, Sharma GK, Sahoo S, Jha PK et al (2022) Impacts of land use on pools and indices of soil organic carbon and nitrogen in the Ghaggar flood plains of Arid India. Land 11(8):1180. https://doi.org/10.3390/land11081180

    Article  Google Scholar 

  • Moinet GY, Hijbeek R, van Vuuren DP, Giller KE (2023) Carbon for soils, not soils for carbon. Glob Chang Biol 29:2384–2398. https://doi.org/10.1111/gcb.16570

    Article  CAS  PubMed  Google Scholar 

  • Naik SK, Maurya S, Bhatt BP (2017) Soil organic carbon stocks and fractions in different orchards of eastern plateau and hill region of India. Agrofor Syst 91:541–552. https://doi.org/10.1007/s10457-016-9957-4

    Article  Google Scholar 

  • Nogueirol RC, Cerri CEP, da Silva WTL, Alleoni LRF (2014) Effect of no-tillage and amendments on carbon lability in tropical soils. Soil Tillage Res 143:67–76. https://doi.org/10.1016/j.still.2014.05.014

    Article  Google Scholar 

  • Noon ML, Goldstein A, Ledezma JC, Roehrdanz PR, Cook-Patton SC, Spawn-Lee SA, Wright TM et al (2022) Mapping the irrecoverable carbon in Earth’s ecosystems. Nat Sustain 5(1):37–46. https://doi.org/10.1038/s41893-021-00803-6

    Article  Google Scholar 

  • Oelbermann M, Voroney RP (2007) Carbon and nitrogen in a temperate agroforestry system: using stable isotopes as a tool to understand soil dynamics. Ecol Eng 4(29):342–349. https://doi.org/10.1016/j.ecoleng.2006.09.014

    Article  Google Scholar 

  • Pan J, Liu C, Li H, Wu Q, Dong Z, Dou X (2022) Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China. Agrofor Syst 96(7):997–1008

    Article  Google Scholar 

  • Pardon P, Reubens B, Reheul D, Mertens J, De Frenne P, Coussement T, Janssens P, Verheyen K (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric Ecosyst Environ 247:98–111. https://doi.org/10.1016/j.agee.2017.06.018

    Article  CAS  Google Scholar 

  • Parihar CM, Yadav MR, Jat SL, Singh AK, Kumar B, Pradhan S et al (2016) Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Tillage Res 161:116–128. https://doi.org/10.1016/j.still.2016.04.001

    Article  Google Scholar 

  • Peltre C, Fernández JM, Craine JM, Plante AF (2013) Relationships between biological and thermal indices of soil organic matter stability differ with soil organic carbon level. Soil Sci Soc Am J 77(6):2020–2028

    Article  CAS  Google Scholar 

  • Peng X, Huang Y, Duan X, Yang H, Liu J (2023) Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China. CATENA 220:106721

    Article  CAS  Google Scholar 

  • Pro GFW, Watcher F, Atlases F (2023) Global Forest Watch (GFW). Update. https://www.globalforestwatch.org/dashboards/country/COL/. Accesed 11 April 2023

  • Quanying W, Yang W, Qicun W, Jingshuang L (2014) Impacts of 9 years of a new conservational agricultural management on soil organic carbon fractions. Soil Tillage Res 143:1–6

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/

  • Ramesh T, Manjaiah KM, Mohopatra KP, Rajasekar K, Ngachan SV (2015) Assessment of soil organic carbon stocks and fractions under different agroforestry systems in subtropical hill agroecosystems of north-east India. Agrofor Syst 89:677–690. https://doi.org/10.1007/s10457-015-9804-z

    Article  Google Scholar 

  • Rodríguez W, Suárez JC, Casanoves F (2023) Total litterfall and leaf-litter decomposition of Theobroma grandiflorum under different agroforestry systems in the western Colombian Amazon. Agrofor Syst 97(8):1541–1556

  • Rodríguez L, Suárez JC, Pulleman M, Guaca L, Rico A, Romero M, Quintero M et al (2021a) Agroforestry systems in the Colombian Amazon improve the provision of soil ecosystem services. Appl Soil Ecol 164:103933. https://doi.org/10.1016/j.apsoil.2021.103933

    Article  Google Scholar 

  • Rodríguez L, Suárez JC, Rodríguez W, Artunduaga KJ, Lavelle P (2021b) Agroforestry systems impact soil macroaggregation and enhance carbon storage in Colombian deforested Amazonia. Geoderma 384:114810. https://doi.org/10.1016/j.geoderma.2020.114810

    Article  CAS  ADS  Google Scholar 

  • Rodríguez Suárez L, Suárez Salazar JC, Casanoves F, Ngo Bieng MA (2021) Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agric Ecosyst Environ 314:107349. https://doi.org/10.1016/j.agee.2021.107349

    Article  CAS  Google Scholar 

  • Samal SK, Rao KK, Poonia SP, Kumar R, Mishra JS, Prakash V, Mondal S et al (2017) Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: carbon dynamics and productivity. Eur J Agron 90:198–208. https://doi.org/10.1016/j.eja.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherrod LA, Peterson GA, Westfall DG, Ahuja LR (2005) Soil organic carbon pools after 12 years in no-till dryland agroecosystems. Soil Sci Soc Am J 69(5):1600–1608. https://doi.org/10.2136/sssaj2003.0266

    Article  CAS  Google Scholar 

  • Silveira MV, Silva-Junior CH, Anderson LO, Aragão LEOC (2022) Amazon fires in the 21st century: the year of 2020 in evidence. Glob Ecol Biogeogr 10(31):2026–2040. https://doi.org/10.1111/geb.13577

    Article  Google Scholar 

  • Smiley GL, Kroschel J (2008) Temporal change in carbon stocks of cocoa-gliricidia agroforests in Central Sulawesi, Indonesia. Agrofor Syst 73:219–231

    Article  Google Scholar 

  • Sun C, Xue S, Chai Z, Zhang C, Liu G (2016) Effects of land-use types on the vertical distribution of fractions of oxidizable organic carbon on the Loess Plateau, China. J Arid Land 8(2):221–231

    Article  Google Scholar 

  • Valencia V, García-Barrios L, West P, Sterling EJ, Naeem S (2014) The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agric Ecosyst Environ 189:154–163. https://doi.org/10.1016/j.agee.2014.03.024

    Article  Google Scholar 

  • Vicente LC, Gama-Rodrigues EF, Aleixo S, Gama-Rodrigues AC, Andrade GRP (2023) Chemical composition of organic carbon in aggregate density fractions under cacao agroforestry systems in South Bahia, Brazil. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-022-01083-5

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  ADS  Google Scholar 

  • Wang X, Xu J, Wu Z, Shen Y, Cai Y (2019) Effect of annual prescribed burning of wetlands on soil organic carbon fractions: A 5-year study in Poyang, China. Ecol Eng 138:219–226

    Article  Google Scholar 

  • Wang W, Ingwersen J, Yang G, Wang Z, Alimu A (2022) Effects of farmland conversion to orchard or agroforestry on soil organic carbon fractions in an arid desert oasis area. Forests 13(2):181

    Article  Google Scholar 

  • Yu P, Liu S, Han K, Guan S, Zhou D (2017) Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agric Ecosyst Environ 245:83–91. https://doi.org/10.1016/j.agee.2017.05.013

    Article  CAS  Google Scholar 

  • Zhang F, Li S, Yue S, Song Q (2022) The effect of long-term soil surface mulching on SOC fractions and the carbon management index in a semiarid agroecosystem. Soil Tillage Res 216:105233

    Article  Google Scholar 

Download references

Funding

The soil analyses were carried out with the support of the Soil Laboratory of the Universidad de la Amazonia, Florencia, Colombia.

Author information

Authors and Affiliations

Authors

Contributions

J.C.S. and H.J.A. planned the research project and sampling methodology. M.S. and H.J.A. carried out the statistical analyses and the preparation of the figures. J.C.S. wrote the first version of the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Juan Carlos Suárez.

Ethics declarations

Conflict of interest

One of the coauthors of this manuscript is the guest editor of this special issue: Dr. Hernán J. Andrade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez, J.C., Segura, M. & Andrade, H.J. Agroforestry systems affect soil organic carbon stocks and fractions in deforested landscapes of Amazonia. Agroforest Syst (2024). https://doi.org/10.1007/s10457-023-00949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10457-023-00949-6

Keywords

Navigation