Skip to main content
Log in

Efficiency enhancement of micro-light-emitting diode with shrinking size by localized surface plasmons coupling

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The external quantum efficiency (EQE) enhancement of different sized GaN micro-light-emitting diodes (μLEDs) by using localized surface plasmons (LSPs) have been studied. Silver nanoparticles (Ag NPs) are attached to the sidewalls of μLEDs by spin-coating so as to be effectively coupled with the multiple quantum well (MQW) of μLEDs and generate the LSPs. In the μLEDs with 20 × 20 μm2 large mesas, the LSPs can effectively inhibit the efficiency droop. Compared to the μLED samples without the LSPs coupling, the EQE has been enhanced by about 8% at a high current density of 20,000 A/cm2. This work confirms the effectiveness of the LSPs technology in improving the μLED performances, which is originally practiced only on the basal faces of conventional LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308(5726), 1274–1278 (2005). https://doi.org/10.1126/science.1108712

    Article  ADS  Google Scholar 

  2. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Prospects for LED lighting. Nat. Photonics 3, 180–182 (2009). https://doi.org/10.1038/nphoton.2009.32

    Article  ADS  Google Scholar 

  3. H.S. Wasisto, J.D. Prades, J. Gülink, A. Waag, Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs. Appl. Phys. Rev. 6(4), 019901(1–40) (2019). https://doi.org/10.1063/5.0005787

    Article  Google Scholar 

  4. Z. Liu, C.H. Lin, B.R. Hyun, C.W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.H. Ho, H.C. Kuo, J.H. He, Micro-light-emitting diodes with quantum dots in display technology. Light. Sci. Appl. 9(83), 1–23 (2020). https://doi.org/10.1038/s41377-020-0268-1

    Article  Google Scholar 

  5. Y. Huang, E.L. Hsiang, M.Y. Deng, S.T. Wu, Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light. Sci. Appl. 9(105), 1–16 (2020). https://doi.org/10.1038/s41377-020-0341-9

    Article  Google Scholar 

  6. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies. J. Appl. Phys. 114(7), 071101(1–14) (2013). https://doi.org/10.1063/1.4816434

    Article  ADS  Google Scholar 

  7. P. Tian, J.J.D. McKendry, Z. Gong, B. Guilhabert, I.M. Watson, E. Gu, Z. Chen, G. Zhang, M.D. Dawson, Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies. J. Appl. Phys. 114(7), 231110(1–4) (2012). https://doi.org/10.1063/1.4816434

    Article  Google Scholar 

  8. D.S. Meyaard, Q. Shan, J. Cho, E.F. Schubert, S.H. Han, M.H. Kim, C. Sone, S.J. Oh, J.K. Kim, Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities. Appl. Phys. Lett. 100(8), 081106(1–3) (2012). https://doi.org/10.1063/1.3688041

    Article  ADS  Google Scholar 

  9. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004). https://doi.org/10.1038/nmat1198

    Article  ADS  Google Scholar 

  10. M.K. Kwon, J.Y. Kim, B.H. Kim, I.K. Park, C.Y. Cho, C.C. Byeon, S.J. Park, Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 20(7), 1253–1257 (2008). https://doi.org/10.1002/adma.200701130

    Article  Google Scholar 

  11. Y.C. Lu, Y.S. Chen, F.J. Tsai, J.Y. Wang, C.H. Lin, C.Y. Chen, Y.W. Kiang, C.C. Yang, Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor. Appl. Phys. Lett. 94(23), 233113(1–3) (2009). https://doi.org/10.1063/1.3153506

    Article  ADS  Google Scholar 

  12. N. Gao, K. Huang, J. Li, S. Li, X. Yang, J. Kang, Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci. Rep. 2(816), 1–6 (2012). https://doi.org/10.1038/srep00816

    Article  Google Scholar 

  13. G. Lozano, S.R. Rodriguez, M.A. Verschuuren, J.G. Rivas, Metallic nanostructures for efficient LED lighting. Light. Sci. Appl. 5(e16080), 1–10 (2016). https://doi.org/10.1038/lsa.2016.80

    Article  Google Scholar 

  14. I.N. Lee, L.W. Jiang, A.Y. Polyakov, Performance enhancement of GaN-based light emitting diodes by the interaction with localized surface plasmons. Nano Energy 13, 140–173 (2015). https://doi.org/10.1016/j.nanoen.2015.01.050

    Article  Google Scholar 

  15. D.M. Yeh, C.F. Huang, C.Y. Chen, Y.C. Lu, C.C. Yang, Surface plasmon coupling effect in an InGaN/GaN single-quantum- well light-emitting diode. Appl. Phys. Lett. 91(17), 171103(1–3) (2007). https://doi.org/10.1063/1.2802067

    Article  ADS  Google Scholar 

  16. D.M. Yeh, C.F. Huang, C.Y. Chen, Y.C. Lu, C.C. Yang, Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 19(34), 345201(1–4) (2008). https://doi.org/10.1088/0957-4484/19/34/345201

    Article  Google Scholar 

  17. P. Tian, J.J.D. McKendry, Z. Gong, B. Guilhabert, I.M. Watson, E. Gu, Z. Chen, G. Zhang, M.D. Dawson, Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 101(23), 231110(1–4) (2012). https://doi.org/10.1063/1.4769835

    Article  ADS  Google Scholar 

  18. D. Chen, Z. Wang, F.C. Hu, C. Shen, N. Chi, W. Liu, D.W. Zhang, H.L. Lu, Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with an atomic layer deposited AlN passivation layer. Opt. Express 29(22), 36559–36566 (2021). https://doi.org/10.1364/OE.439596

    Article  ADS  Google Scholar 

  19. D.J. Kong, S.Y. Bae, C.M. Kang, D.S. Lee, InGaN/GaN microcolumn light-emitting diode arrays with sidewall metal contact. Opt. Express 21(19), 22320–22326 (2013). https://doi.org/10.1364/OE.21.022320

    Article  ADS  Google Scholar 

  20. H.W. Choi, M.D. Dawson, High extraction efficiency InGaN micro-ring light-emitting diodes. Appl. Phys. Lett. 83(22), 4483–4485 (2003). https://doi.org/10.1063/1.1630352

    Article  ADS  Google Scholar 

  21. J. Cho, C. Sone, Y. Park, E. Yoon, Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift. Phys. Stat. Sol. A 202(9), 1869–1873 (2003). https://doi.org/10.1002/pssa.200520041

    Article  ADS  Google Scholar 

  22. Z. Zhuang, D. Iida, K. Ohkawa, Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes. Appl. Phys. Lett. 116(17), 173501(1–4) (2020). https://doi.org/10.1063/5.0006910

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from National Key Research and Development Program of China (Nos. 2023YFB3608703 and 2023YFB3608700), Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Nos. 2021ZZ122 and 2020ZZ110), and Fujian provincial projects (Nos. 2021HZ0114 and 2021J01583).

Author information

Authors and Affiliations

Authors

Contributions

ZD and JS: designed experiments and wrote the main manuscript text, ZD and PT: conducted the experiments, HF and JS. provided experimental materials: WG and KH: provided experimental guidance and manuscript revision, EC, TG, QY and JS, provided guidance and funding for the experiments. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jie Sun or Qun Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Sun, J., Feng, H. et al. Efficiency enhancement of micro-light-emitting diode with shrinking size by localized surface plasmons coupling. Appl. Phys. B 130, 36 (2024). https://doi.org/10.1007/s00340-024-08174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08174-4

Navigation