1887

Abstract

is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired . On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of across different biological kingdoms and the varying roles of this bacterium in plant and human health.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001791
2024-02-16
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/73/2/jmm001791.html?itemId=/content/journal/jmm/10.1099/jmm.0.001791&mimeType=html&fmt=ahah

References

  1. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 2008; 197:1079–1081 [View Article] [PubMed]
    [Google Scholar]
  2. AR Threats Report Antibiotic resistance threats in the United States, 2019. U. S. Department of Health and Human Services Centers for Disease Control and Prevention; 2019 https://www.cdc.gov/drugresistance/biggest-threats.html accessed 4 December 2022
  3. Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL. World health organization report: current crisis of antibiotic resistance. BioNanoSci 2019; 9:778–788 [View Article]
    [Google Scholar]
  4. Litwin A, Rojek S, Gozdzik W, Duszynska W. Pseudomonas aeruginosa device associated - healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: polish, 8.5-year, prospective, single-centre study. BMC Infect Dis 2021; 21:180 [View Article] [PubMed]
    [Google Scholar]
  5. Magill SS, Li Q, Gross C, Dudeck M, Allen-Bridson K et al. Incidence and characteristics of ventilator-associated events reported to the National Healthcare Safety Network in 2014. Crit Care Med 2016; 44:2154–2162 [View Article] [PubMed]
    [Google Scholar]
  6. Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 2002; 3:128–134 [View Article] [PubMed]
    [Google Scholar]
  7. Radford R, Brahma A, Armstrong M, Tullo AB. Severe sclerokeratitis due to Pseudomonas aeruginosa in noncontact-lens wearers. Eye 2000; 14:3–7 [View Article] [PubMed]
    [Google Scholar]
  8. Tate D, Mawer S, Newton A. Outbreak of Pseudomonas aeruginosa folliculitis associated with a swimming pool inflatable. Epidemiol Infect 2003; 130:187–192 [View Article] [PubMed]
    [Google Scholar]
  9. Doustdar F, Karimi F, Abedinyfar Z, Amoli FA, Goudarzi H. Genetic features of Pseudomonas aeruginosa isolates associated with eye infections referred to Farabi Hospital, Tehran, Iran. Int Ophthalmol 2019; 39:1581–1587 [View Article] [PubMed]
    [Google Scholar]
  10. Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 2000; 3:247–255 [View Article] [PubMed]
    [Google Scholar]
  11. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002; 95:22–26 [PubMed]
    [Google Scholar]
  12. Kaszab E, Radó J, Kriszt B, Pászti J, Lesinszki V et al. Groundwater, soil and compost, as possible sources of virulent and antibiotic-resistant Pseudomonas aeruginosa. Int J Environ Health Res 2021; 31:848–860 [View Article] [PubMed]
    [Google Scholar]
  13. Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 1974; 28:987–991 [View Article] [PubMed]
    [Google Scholar]
  14. Schroth M, Cho J, Green S, Kominos S. Epidemiology of Pseudomonas aeruginosa in agricultural areas. In Young V. eds Pseudomonas aeruginosa: Ecological Aspects and Patient Colonization New York: Raven Press; 1977 pp 1–29
    [Google Scholar]
  15. Abd El-Ghany WA. Pseudomonas aeruginosa infection of avian origin: zoonosis and one health implications. Vet World 2021; 14:2155–2159 [View Article] [PubMed]
    [Google Scholar]
  16. Khan NH, Ishii Y, Kimata-Kino N, Esaki H, Nishino T et al. Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb Ecol 2007; 53:173–186 [View Article] [PubMed]
    [Google Scholar]
  17. Kimata N, Nishino T, Suzuki S, Kogure K. Pseudomonas aeruginosa isolated from marine environments in Tokyo Bay. Microb Ecol 2004; 47:41–47 [View Article] [PubMed]
    [Google Scholar]
  18. Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E et al. Hospital drains as reservoirs of Pseudomonas aeruginosa: multiple-locus variable-number of tandem repeats analysis genotypes recovered from Faucets, Sink Surfaces and patients. Pathogens 2017; 6:36 [View Article] [PubMed]
    [Google Scholar]
  19. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z et al. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 2008; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  20. Lakshmi V, Kumari S, Singh A, Prabha C. Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 2015; 27:113–119 [View Article]
    [Google Scholar]
  21. Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates. J Appl Microbiol 2021; 132:3226–3248 [View Article] [PubMed]
    [Google Scholar]
  22. Cho JJ, JJ C, SD K. Ornamental plants as carriers of Pseudomonas aeruginosa. Phytopathology 1975; 65:425 [View Article]
    [Google Scholar]
  23. Anaissie EJ, Penzak SR, Dignani MC. The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med 2002; 162:1483–1492 [View Article] [PubMed]
    [Google Scholar]
  24. Favero MS, Carson LA, Bond WW, Petersen NJ. Pseudomonas aeruginosa: growth in distilled water from hospitals. Science 1971; 173:836–838 [View Article] [PubMed]
    [Google Scholar]
  25. Trautmann M, Lepper PM, Haller M. Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am J Infect Control 2005; 33:S41–949 [View Article] [PubMed]
    [Google Scholar]
  26. Fazeli H, Akbari R, Moghim S, Narimani T, Arabestani MR et al. Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens. J Res Med Sci 2012; 17:332–337 [PubMed]
    [Google Scholar]
  27. Kush BJ, Hoadley AW. A preliminary survey of the association of Pseudomonas aeruginosa with commercial whirlpool bath waters. Am J Public Health 1980; 70:279–281 [View Article] [PubMed]
    [Google Scholar]
  28. Hopkins RS, Abbott DO, Wallace LE. Follicular dermatitis outbreak caused by Pseudomonas aeruginosa associated with a motel’s indoor swimming pool. Public Health Rep 1981; 96:246–249 [PubMed]
    [Google Scholar]
  29. Jacobs RF, McCarthy RE, Elser JM. Pseudomonas osteochondritis complicating puncture wounds of the foot in children: a 10-year evaluation. J Infect Dis 1989; 160:657–661 [View Article] [PubMed]
    [Google Scholar]
  30. Dolan SK, Kohlstedt M, Trigg S, Vallejo Ramirez P, Kaminski CF et al. Contextual flexibility in Pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. mBio 2020; 11:e02684–e02619 [View Article] [PubMed]
    [Google Scholar]
  31. Suh S-J, Runyen-Janecky LJ, Maleniak TC, Hager P, MacGregor CH et al. Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Microbiology 2002; 148:1561–1569 [View Article] [PubMed]
    [Google Scholar]
  32. McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L et al. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457 [View Article] [PubMed]
    [Google Scholar]
  33. Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol 2017; 24:195–206 [View Article] [PubMed]
    [Google Scholar]
  34. Tatke G, Kumari H, Silva-Herzog E, Ramirez L, Mathee K. Pseudomonas aeruginosa MifS-MifR two-component system is specific for α-ketoglutarate utilization. PLoS One 2015; 10:e0129629 [View Article] [PubMed]
    [Google Scholar]
  35. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:75 [View Article] [PubMed]
    [Google Scholar]
  36. Sarma RK, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 2013; 377:111–126 [View Article]
    [Google Scholar]
  37. Alvarez-Ortega C, Harwood CS. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 2007; 65:153–165 [View Article] [PubMed]
    [Google Scholar]
  38. Mtengai K, Ramasamy S, Msimuko P, Mzula A, Mwega ED. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area. Environ Monit Assess 2022; 194:887 [View Article] [PubMed]
    [Google Scholar]
  39. Vander Wauven C, Piérard A, Kley-Raymann M, Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol 1984; 160:928–934 [View Article] [PubMed]
    [Google Scholar]
  40. Cox CD, Parker J. Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J Clin Microbiol 1979; 9:479–484 [View Article] [PubMed]
    [Google Scholar]
  41. Scott-Thomas AJ, Syhre M, Pattemore PK, Epton M, Laing R et al. 2-aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med 2010; 10:56 [View Article] [PubMed]
    [Google Scholar]
  42. Bean HD, Rees CA, Hill JE. Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. J Breath Res 2016; 10:047102 [View Article] [PubMed]
    [Google Scholar]
  43. Smith D, Spaněl P, Gilchrist FJ, Lenney W. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. J Breath Res 2013; 7:044001 [View Article] [PubMed]
    [Google Scholar]
  44. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B. Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2011; 2:150 [View Article] [PubMed]
    [Google Scholar]
  45. Weiser R, Green AE, Bull MJ, Cunningham-Oakes E, Jolley KA et al. Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microb Genom 2019; 5:e000276 [View Article] [PubMed]
    [Google Scholar]
  46. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article] [PubMed]
    [Google Scholar]
  47. Badal D, Jayarani AV, Kollaran MA, Kumar A, Singh V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J Med Microbiol 2020; 69:906–919 [View Article] [PubMed]
    [Google Scholar]
  48. Kollaran AM, Joge S, Kotian HS, Badal D, Prakash D et al. Context-specific requirement of forty-four two-component loci in Pseudomonas aeruginosa swarming. iScience 2019; 13:305–317 [View Article] [PubMed]
    [Google Scholar]
  49. Abdou L, Chou H-T, Haas D, Lu C-D. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J Bacteriol 2011; 193:2784–2792 [View Article] [PubMed]
    [Google Scholar]
  50. Li W, Lu C-D. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. J Bacteriol 2007; 189:5413–5420 [View Article] [PubMed]
    [Google Scholar]
  51. Nishijyo T, Haas D, Itoh Y. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 2001; 40:917–931 [View Article] [PubMed]
    [Google Scholar]
  52. Williams HD, Zlosnik JEA, Ryall B. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. In Poole RK. eds Advances in Microbial Physiology Academic Press; 2006 pp 1–71
    [Google Scholar]
  53. Shen K, Sayeed S, Antalis P, Gladitz J, Ahmed A et al. Extensive genomic plasticity in Pseudomonas aeruginosa revealed by identification and distribution studies of novel genes among clinical isolates. Infect Immun 2006; 74:5272–5283 [View Article] [PubMed]
    [Google Scholar]
  54. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 2008; 105:3100–3105 [View Article] [PubMed]
    [Google Scholar]
  55. Qiu X, Kulasekara BR, Lory S. Role of horizontal gene transfer in the evolution of Pseudomonas aeruginosa virulence. In de Reuse H, Bereswill S. eds Microbial Pathogenomics 2009 pp 126–139 [View Article]
    [Google Scholar]
  56. San Millan A, Toll-Riera M, Qi Q, MacLean RC. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 2015; 6:6845 [View Article] [PubMed]
    [Google Scholar]
  57. Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 2019; 11:109–120 [View Article] [PubMed]
    [Google Scholar]
  58. Jani M, Mathee K, Azad RK. Identification of novel genomic Islands in liverpool epidemic strain of Pseudomonas aeruginosa using segmentation and clustering. Front Microbiol 2016; 7:1210 [View Article] [PubMed]
    [Google Scholar]
  59. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:e00595–e00518 [View Article] [PubMed]
    [Google Scholar]
  60. Wong A, Rodrigue N, Kassen R. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLOS Genet 2012; 8:e1002928 [View Article] [PubMed]
    [Google Scholar]
  61. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 2015; 18:307–319 [View Article] [PubMed]
    [Google Scholar]
  62. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [View Article] [PubMed]
    [Google Scholar]
  63. Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2019; 116:10072–10080 [View Article] [PubMed]
    [Google Scholar]
  64. Botelho J, Tüffers L, Fuss J, Buchholz F, Utpatel C et al. Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa. EBioMedicine 2023; 90:104532 [View Article] [PubMed]
    [Google Scholar]
  65. Ambreetha S, Parshatd G, Castellanos C, Narasimhan G, Balachandar D et al. Genetic determinants of virulence and extensive drug resistance in Pseudomonas aeruginosa PPA14 isolated from eggplant rhizosphere. bioRxiv 2023 [View Article]
    [Google Scholar]
  66. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 2006; 43:S49–S56 [View Article] [PubMed]
    [Google Scholar]
  67. Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother 2004; 48:4654–4661 [View Article] [PubMed]
    [Google Scholar]
  68. Khajuria A, Praharaj AK, Kumar M, Grover N. Emergence of NDM - 1 in the clinical isolates of Pseudomonas aeruginosa in India. J Clin Diagn Res 2013; 7:1328–1331 [View Article] [PubMed]
    [Google Scholar]
  69. Yan J-J, Hsueh P-R, Lu J-J, Chang F-Y, Ko W-C et al. Characterization of acquired beta-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons. J Antimicrob Chemother 2006; 58:530–536 [View Article] [PubMed]
    [Google Scholar]
  70. Gabrielaite M, Johansen HK, Molin S, Nielsen FC, Marvig RL. Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. mBio 2020; 11:e02359-20 [View Article] [PubMed]
    [Google Scholar]
  71. Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 2020; 128:220–231 [View Article] [PubMed]
    [Google Scholar]
  72. Pirnay J-P, Matthijs S, Colak H, Chablain P, Bilocq F et al. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol 2005; 7:969–980 [View Article] [PubMed]
    [Google Scholar]
  73. Aoi Y, Nakata H, Kida H. Isolation of Pseudomonas aeruginosa from Ushubetsu River water in Hokkaido, Japan. Jpn J Vet Res 2000; 48:29–34 [View Article] [PubMed]
    [Google Scholar]
  74. Deredjian A, Colinon C, Hien E, Brothier E, Youenou B et al. Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment. Front Cell Infect Microbiol 2014; 4:53 [View Article] [PubMed]
    [Google Scholar]
  75. Petit SM-C, Lavenir R, Colinon-Dupuich C, Boukerb AM, Cholley P et al. Lagooning of wastewaters favors dissemination of clinically relevant Pseudomonas aeruginosa. Res Microbiol 2013; 164:856–866 [View Article] [PubMed]
    [Google Scholar]
  76. Wheater DWF, Mara DD, Jawad L, Oragui J. Pseudomonas aeruginosa and Escherichia coli in sewage and fresh water. Water Res 1980; 14:713–721 [View Article]
    [Google Scholar]
  77. Ullah A, Durrani R, Ali G, Ahmed S. Prevalence of antimicrobial resistant Pseudomonas aeruginosa in fresh water spring contaminated with domestic sewage. J Biol Food Sci. Res 2012; 1:19–22
    [Google Scholar]
  78. Aumeran C, Paillard C, Robin F, Kanold J, Baud O et al. Pseudomonas aeruginosa and Pseudomonas putida outbreak associated with contaminated water outlets in an oncohaematology paediatric unit. J Hosp Infect 2007; 65:47–53 [View Article] [PubMed]
    [Google Scholar]
  79. Fuentefria DB, Ferreira AE, Corção G. Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: are they genetically related?. J Environ Manage 2011; 92:250–255 [View Article] [PubMed]
    [Google Scholar]
  80. Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 2012; 78:3214–3220 [View Article] [PubMed]
    [Google Scholar]
  81. Slekovec C, Plantin J, Cholley P, Thouverez M, Talon D et al. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network. PLoS One 2012; 7:e49300 [View Article] [PubMed]
    [Google Scholar]
  82. Orlofsky E, Bernstein N, Sacks M, Vonshak A, Benami M et al. Comparable levels of microbial contamination in soil and on tomato crops after drip irrigation with treated wastewater or potable water. Agric Ecosyst Environ 2016; 215:140–150 [View Article]
    [Google Scholar]
  83. Linu MS, Asok AK, Thampi M, Sreekumar J, Jisha MS. Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicumannuum L.) rhizosphere. Commun Soil Sci Plant Anal 2019; 50:444–457 [View Article]
    [Google Scholar]
  84. Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B et al. Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 2013; 15:764–779 [View Article] [PubMed]
    [Google Scholar]
  85. Iasur Kruh L, Bari VK, Abu-Nassar J, Lidor O, Aly R. Characterization of an endophytic bacterium (Pseudomonas aeruginosa), originating from tomato (Solanum lycopersicum L.), and its ability to inhabit the parasitic weed Phelipanche aegyptiaca. Plant Signal Behav 2020; 15:1766292 [View Article] [PubMed]
    [Google Scholar]
  86. Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P. The endophytic symbiont-Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front Microbiol 2017; 8:1–14 [View Article] [PubMed]
    [Google Scholar]
  87. Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M et al. Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol 2014; 30:1649–1654 [View Article] [PubMed]
    [Google Scholar]
  88. Wu T, Xu J, Xie W, Yao Z, Yang H et al. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front Microbiol 2018; 9:1–12 [View Article] [PubMed]
    [Google Scholar]
  89. Mukherjee A, Singh BK, Verma JP. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 2020; 237:126469 [View Article] [PubMed]
    [Google Scholar]
  90. Akinsanya MA, Goh JK, Lim SP, Ting ASY. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiol Lett 2015; 362:fnv184 [View Article] [PubMed]
    [Google Scholar]
  91. Singh P, Singh RK, Guo D-J, Sharma A, Singh RN et al. Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front Microbiol 2021; 12:628376 [View Article] [PubMed]
    [Google Scholar]
  92. Sun X, Xu Y, Chen L, Jin X, Ni H. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiol Res 2021; 245:126673 [View Article] [PubMed]
    [Google Scholar]
  93. Allydice-Francis K, Brown PD. Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables. Int J Microbiol 2012; 2012:426241 [View Article] [PubMed]
    [Google Scholar]
  94. Kominos SD, Copeland CE, Grosiak B, Postic B. Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Appl Microbiol 1972; 24:567–570 [View Article] [PubMed]
    [Google Scholar]
  95. Correa CM, Tibana A, Gontijo Filho PP. Vegetables as a source of infection with Pseudomonas aeruginosa in a University and Oncology Hospital of Rio de Janeiro. J Hosp Infect 1991; 18:301–306 [View Article] [PubMed]
    [Google Scholar]
  96. Mathee K. Forensic investigation into the origin of Pseudomonas aeruginosa PA14 - old but not lost. J Med Microbiol 2018; 67:1019–1021 [View Article] [PubMed]
    [Google Scholar]
  97. He J, Baldini RL, Déziel E, Saucier M, Zhang Q et al. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A 2004; 101:2530–2535 [View Article] [PubMed]
    [Google Scholar]
  98. Plotnikova JM, Rahme LG, Ausubel FM. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 2000; 124:1766–1774 [View Article] [PubMed]
    [Google Scholar]
  99. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG et al. Pseudomonas aeruginosa-plant root interactions. pathogenicity, biofilm formation, and root exudation. Plant Physiol 2004; 134:320–331 [View Article] [PubMed]
    [Google Scholar]
  100. Schroth MN, Cho JJ, Green SK, Kominos SD. Epidemiology of Pseudomonas aeruginosa in agricultural areas. J Med Microbiol 2018; 67:1191–1201 [View Article] [PubMed]
    [Google Scholar]
  101. Banerjee S, Batabyal K, Joardar SN, Isore DP, Dey S et al. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Vet World 2017; 10:738–742 [View Article] [PubMed]
    [Google Scholar]
  102. Scaccabarozzi L, Leoni L, Ballarini A, Barberio A, Locatelli C et al. Pseudomonas aeruginosa in dairy goats: genotypic and phenotypic comparison of intramammary and environmental isolates. PLoS One 2015; 10:e0142973 [View Article] [PubMed]
    [Google Scholar]
  103. Leitner G, Krifucks O. Pseudomonas aeruginosa mastitis outbreaks in sheep and goat flocks: antibody production and vaccination in a mouse model. Vet Immunol Immunopathol 2007; 119:198–203 [View Article] [PubMed]
    [Google Scholar]
  104. Giannattasio-Ferraz S, Ene A, Gomes VJ, Queiroz CO, Maskeri L et al. Escherichia coli and Pseudomonas aeruginosa isolated from urine of healthy bovine have potential as emerging human and bovine pathogens. Front Microbiol 2022; 13:764760 [View Article] [PubMed]
    [Google Scholar]
  105. Foti M, Giacopello C, Fisichella V, Latella G. Multidrug-resistant Pseudomonas aeruginosa isolates from captive Rreptiles. J Exot Pet Med 2013; 22:270–274 [View Article]
    [Google Scholar]
  106. Fernandes MR, Sellera FP, Moura Q, Carvalho MPN, Rosato PN et al. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil. Emerg Infect Dis 2018; 24:1160–1162 [View Article] [PubMed]
    [Google Scholar]
  107. Mohan K, Fothergill JL, Storrar J, Ledson MJ, Winstanley C et al. Transmission of Pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosis to a pet cat. Thorax 2008; 63:839–840 [View Article] [PubMed]
    [Google Scholar]
  108. Heck LW, Morihara K, McRae WB, Miller EJ. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 1986; 51:115–118 [View Article] [PubMed]
    [Google Scholar]
  109. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996; 21:1137–1146 [View Article] [PubMed]
    [Google Scholar]
  110. Cox CD. Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infect Immun 1982; 36:17–23 [View Article] [PubMed]
    [Google Scholar]
  111. Cox CD, Adams P. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 1985; 48:130–138 [View Article] [PubMed]
    [Google Scholar]
  112. Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1–20 [View Article] [PubMed]
    [Google Scholar]
  113. Hassett DJ, Charniga L, Bean K, Ohman DE, Cohen MS. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun 1992; 60:328–336 [View Article] [PubMed]
    [Google Scholar]
  114. Watson D, MacDermot J, Wilson R, Cole PJ, Taylor GW. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur J Biochem 1986; 159:309–313 [View Article] [PubMed]
    [Google Scholar]
  115. Abdelaziz AA, Kamer AMA, Al-Monofy KB, Al-Madboly LA. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: its production and biological activities. Microb Cell Fact 2023; 22:110 [View Article] [PubMed]
    [Google Scholar]
  116. Essar DW, Eberly L, Hadero A, Crawford IP. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 1990; 172:884–900 [View Article] [PubMed]
    [Google Scholar]
  117. Mavrodi DV, Blankenfeldt W, Thomashow LS. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 2006; 44:417–445 [View Article] [PubMed]
    [Google Scholar]
  118. Price-Whelan A, Dietrich LEP, Newman DK. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 2007; 189:6372–6381 [View Article] [PubMed]
    [Google Scholar]
  119. Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 2019; 10:762 [View Article] [PubMed]
    [Google Scholar]
  120. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H et al. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 2012; 109:19420–19425 [View Article] [PubMed]
    [Google Scholar]
  121. Price-Whelan A, Dietrich LEP, Newman DK. Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2006; 2:71–78 [View Article] [PubMed]
    [Google Scholar]
  122. Stewart-Tull DES, Armstrong AV. The effect of 1-hydroxyphenazine and pyocyanin from Pseudomonas aeruginosa on mammalian cell respiration. J Med Microbiol 1972; 5:67–73 [View Article] [PubMed]
    [Google Scholar]
  123. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 2016; 8:236–244 [View Article] [PubMed]
    [Google Scholar]
  124. Moayedi A, Nowroozi J, Akhavan Sepahy A. Cytotoxic effect of pyocyanin on human pancreatic cancer cell line (Panc-1). Iran J Basic Med Sci 2018; 21:794–799 [View Article] [PubMed]
    [Google Scholar]
  125. Rashid MI, Rashid H, Andleeb S, Ali A, Muriel P. Evaluation of blood-brain-barrier permeability, neurotoxicity, and potential cognitive impairment by Pseudomonas aeruginosa’s virulence factor pyocyanin. Oxid Med Cell Longev 2022; 2022:3060579 [View Article] [PubMed]
    [Google Scholar]
  126. Raji El Feghali PA, Nawas T. Pyocyanin: a powerful inhibitor of bacterial growth and biofilm formation. Madridge J Case Rep Stud 2018; 3:101–107 [View Article]
    [Google Scholar]
  127. Baron SS, Terranova G, Rowe JJ. Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 1989; 18:223–230 [View Article]
    [Google Scholar]
  128. Leanse LG, Zeng X, Dai T. Potentiated antimicrobial blue light killing of methicillin resistant Staphylococcus aureus by pyocyanin. J Photochem Photobiol B: Biol 2021; 215:112109 [View Article] [PubMed]
    [Google Scholar]
  129. Kamer AMA, Abdelaziz AA, Al-Monofy KB, Al-Madboly LA. Antibacterial, antibiofilm, and anti-quorum sensing activities of pyocyanin against methicillin-resistant Staphylococcus aureus: in vitro and in vivo study. BMC Microbiol 2023; 23:116 [View Article] [PubMed]
    [Google Scholar]
  130. Jabbar AT, Aziz RA, Al Marjani MF. Extraction, purification and characterization of pyocyanin pigment from Pseudomonas aeruginosa and testing its biological efficacy. Biochem Cell Arch 202020
    [Google Scholar]
  131. Anjaiah V, Cornelis P, Koedam N. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 2003; 49:85–91 [View Article] [PubMed]
    [Google Scholar]
  132. Mahmoud SY, Ziedan E-S, Farrag ES, Kalafalla RS, Ali AM. Antifungal activity of pyocyanin produced by Pseudomonas aeruginosa against Fusarium oxysporum Schlech a root-rot phytopathogenic fungi. Int J PharmTech Res 2016; 9:43–50
    [Google Scholar]
  133. De Vleesschauwer D, Cornelis P, Höfte M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 2006; 19:1406–1419 [View Article] [PubMed]
    [Google Scholar]
  134. Audenaert K, Pattery T, Cornelis P, Höfte M. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 2002; 15:1147–1156 [View Article] [PubMed]
    [Google Scholar]
  135. Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E. Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In Soberón-Chávez G. eds Biosurfactants: From Genes to Applications Berlin, Heidelberg: Springer Berlin Heidelberg; 2011 pp 13–55 [View Article]
    [Google Scholar]
  136. McClure CD, Schiller NL. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 1992; 51:97–102 [View Article] [PubMed]
    [Google Scholar]
  137. McClure CD, Schiller NL. Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol 1996; 33:109–117 [View Article] [PubMed]
    [Google Scholar]
  138. Jensen , Bjarnsholt T, Phipps R, Rasmussen TB, Calum H et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 2007; 153:1329–1338 [View Article] [PubMed]
    [Google Scholar]
  139. Zulianello L, Canard C, Köhler T, Caille D, Lacroix J-S et al. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 2006; 74:3134–3147 [View Article] [PubMed]
    [Google Scholar]
  140. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR et al. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 2003; 81:316–322 [View Article] [PubMed]
    [Google Scholar]
  141. Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Plant-associated Pseudomonas aeruginosa strains harbour multiple virulence traits critical for human infection. J Med Microbiol 2022; 71:1–18 [View Article] [PubMed]
    [Google Scholar]
  142. Kim BS, Lee JY, Hwang BK. In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 2000; 56:1029–1035 [View Article]
    [Google Scholar]
  143. Yan F, Xu S, Guo J, Chen Q, Meng Q et al. Biocontrol of post-harvest Alternaria alternata decay of cherry tomatoes with rhamnolipids and possible mechanisms of action. J Sci Food Agric 2015; 95:1469–1474 [View Article] [PubMed]
    [Google Scholar]
  144. Kim SK, Kim YC, Lee S, Kim JC, Yun MY et al. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 2011; 59:934–938 [View Article] [PubMed]
    [Google Scholar]
  145. Sancheti A, Ju L-K. Eco-friendly rhamnolipid based fungicides for protection of soybeans from Phytophthora sojae. Pest Manag Sci 2019; 75:3031–3038 [View Article] [PubMed]
    [Google Scholar]
  146. Meyer J-M. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 2000; 174:135–142 [View Article] [PubMed]
    [Google Scholar]
  147. Minandri F, Imperi F, Frangipani E, Bonchi C, Visaggio D et al. Role of iron uptake systems in Pseudomonas aeruginosa virulence and airway infection. Infect Immun 2016; 84:2324–2335 [View Article] [PubMed]
    [Google Scholar]
  148. Leong J. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 1986; 24:187–209 [View Article]
    [Google Scholar]
  149. Bano N, Musarrat J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 2003; 46:324–328 [View Article] [PubMed]
    [Google Scholar]
  150. Parmely M, Gale A, Clabaugh M, Horvat R, Zhou WW. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 1990; 58:3009–3014 [View Article] [PubMed]
    [Google Scholar]
  151. König B, Jaeger KE, Sage AE, Vasil ML, König W. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes). Infect Immun 1996; 64:3252–3258 [View Article] [PubMed]
    [Google Scholar]
  152. Barker AP, Vasil AI, Filloux A, Ball G, Wilderman PJ et al. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol 2004; 53:1089–1098 [View Article] [PubMed]
    [Google Scholar]
  153. Pinna A, Usai D, Sechi LA, Molicotti P, Zanetti S et al. Detection of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-associated corneal ulcers. Cornea 2008; 27:320–326 [View Article] [PubMed]
    [Google Scholar]
  154. Ostroff RM, Wretlind B, Vasil ML. Mutations in the hemolytic-phospholipase C operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions. Infect Immun 1989; 57:1369–1373 [View Article] [PubMed]
    [Google Scholar]
  155. Wargo MJ, Gross MJ, Rajamani S, Allard JL, Lundblad LKA et al. Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2011; 184:345–354 [View Article] [PubMed]
    [Google Scholar]
  156. Goebel W, Chakraborty T, Kreft J. Bacterial hemolysins as virulence factors. Antonie van Leeuwenhoek 1988; 54:453–463 [View Article] [PubMed]
    [Google Scholar]
  157. Darby C, Cosma CL, Thomas JH, Manoil C. Lethal paralysis of caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1999; 96:15202–15207 [View Article] [PubMed]
    [Google Scholar]
  158. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654–665 [View Article] [PubMed]
    [Google Scholar]
  159. Kessler E, Safrin M, Abrams WR, Rosenbloom J, Ohman DE. Inhibitors and specificity of Pseudomonas aeruginosa LasA. J Biol Chem 1997; 272:9884–9889 [View Article] [PubMed]
    [Google Scholar]
  160. Kessler E, Safrin M. Elastinolytic and proteolytic enzymes. In Filloux A, Ramos J-L. eds Pseudomonas Methods and Protocols New York, NY: Springer New York; 2014 pp 135–169 [PubMed]
    [Google Scholar]
  161. Galdino ACM, Branquinha MH, Santos ALS, Viganor L. Pseudomonas aeruginosa and its arsenal of proteases: weapons to battle the host. In Chakraborti S, Dhalla NS. eds Pathophysiological Aspects of Proteases Singapore: Springer Singapore; 2017 pp 381–397 [View Article]
    [Google Scholar]
  162. Wretlind B, Pavlovskis OR. Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis 1983; 5 Suppl 5:S998–1004 [View Article] [PubMed]
    [Google Scholar]
  163. Kida Y, Shimizu T, Kuwano K, Bäumler AJ. Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice. Infect Immun 2011; 79:211–219 [View Article] [PubMed]
    [Google Scholar]
  164. O’Callaghan R, Caballero A, Tang A, Bierdeman M. Pseudomonas aeruginosa keratitis: protease IV and PASP as corneal virulence mediators. Microorganisms 2019; 7:281 [View Article] [PubMed]
    [Google Scholar]
  165. Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLOS Biol 2017; 15:e2003981 [View Article] [PubMed]
    [Google Scholar]
  166. Pollack M. The role of exotoxin A in pseudomonas disease and immunity. Rev Infect Dis 1983; 5 Suppl 5:S979–84 [View Article] [PubMed]
    [Google Scholar]
  167. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004; 72:6969–6977 [View Article] [PubMed]
    [Google Scholar]
  168. Lee VT, Smith RS, Tümmler B, Lory S. Activities of Pseudomonas aeruginosa effectors secreted by the type III secretion system in vitro and during infection. Infect Immun 2005; 73:1695–1705 [View Article] [PubMed]
    [Google Scholar]
  169. Rolsma S, Frank DW, Barbieri JT, Rolsma S, Frank D et al. Pseudomonas aeruginosa toxins. In The Comprehensive Sourcebook of Bacterial Protein Toxins vol 1 2015 pp 133–160
    [Google Scholar]
  170. Garrity-Ryan L, Kazmierczak B, Kowal R, Comolli J, Hauser A et al. The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 2000; 68:7100–7113 [View Article] [PubMed]
    [Google Scholar]
  171. Feltman H, Schulert G, Khan S, Jain M, Peterson L et al. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001; 147:2659–2669 [View Article]
    [Google Scholar]
  172. Schultz MJ, Speelman P, Zaat SA, Hack CE, van Deventer SJ et al. The effect of pseudomonas exotoxin A on cytokine production in whole blood exposed to Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 2000; 29:227–232 [View Article] [PubMed]
    [Google Scholar]
  173. Miyazaki S, Matsumoto T, Tateda K, Ohno A, Yamaguchi K. Role of exotoxin A in inducing severe Pseudomonas aeruginosa infections in mice. J Med Microbiol 1995; 43:169–175 [View Article] [PubMed]
    [Google Scholar]
  174. Pavlovskis OR, Pollack M, Callahan LT, Iglewski BH. Passive protection by antitoxin in experimental Pseudomonas aeruginosa burn infections. Infect Immun 1977; 18:596–602 [View Article] [PubMed]
    [Google Scholar]
  175. Schulert GS, Feltman H, Rabin SDP, Martin CG, Battle SE et al. Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 2003; 188:1695–1706 [View Article] [PubMed]
    [Google Scholar]
  176. Geiser TK, Kazmierczak BI, Garrity-Ryan LK, Matthay MA, Engel JN. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol 2001; 3:223–236 [View Article] [PubMed]
    [Google Scholar]
  177. Evans LR, Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol 1973; 116:915–924 [View Article] [PubMed]
    [Google Scholar]
  178. Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 2004; 186:4457–4465 [View Article] [PubMed]
    [Google Scholar]
  179. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 2009; 73:622–638 [View Article] [PubMed]
    [Google Scholar]
  180. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2011; 2:167 [View Article] [PubMed]
    [Google Scholar]
  181. Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol 1989; 171:2312–2317 [View Article] [PubMed]
    [Google Scholar]
  182. DeVault JD, Kimbara K, Chakrabarty AM. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol 1990; 4:737–745 [View Article] [PubMed]
    [Google Scholar]
  183. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007; 297:277–295 [View Article] [PubMed]
    [Google Scholar]
  184. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 2001; 183:5395–5401 [View Article] [PubMed]
    [Google Scholar]
  185. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167–193 [View Article] [PubMed]
    [Google Scholar]
  186. Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JIA et al. Mucoid conversion of Pseudomonas aeruginos by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999; 145:1349–1357 [View Article]
    [Google Scholar]
  187. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 2011; 7:e1001264 [View Article] [PubMed]
    [Google Scholar]
  188. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 2012; 14:1913–1928 [View Article] [PubMed]
    [Google Scholar]
  189. Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997; 179:3127–3132 [View Article] [PubMed]
    [Google Scholar]
  190. Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun 2009; 77:5631–5639 [View Article] [PubMed]
    [Google Scholar]
  191. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 2005; 187:4372–4380 [View Article] [PubMed]
    [Google Scholar]
  192. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6:26–41 [View Article] [PubMed]
    [Google Scholar]
  193. de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun 2000; 68:4839–4849 [View Article] [PubMed]
    [Google Scholar]
  194. Storz MP, Maurer CK, Zimmer C, Wagner N, Brengel C et al. Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors. J Am Chem Soc 2012; 134:16143–16146 [View Article] [PubMed]
    [Google Scholar]
  195. Jaffar-Bandjee MC, Lazdunski A, Bally M, Carrère J, Chazalette JP et al. Production of elastase, exotoxin A, and alkaline protease in sputa during pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa. J Clin Microbiol 1995; 33:924–929 [View Article] [PubMed]
    [Google Scholar]
  196. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:1–29 [View Article]
    [Google Scholar]
  197. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12:182–191 [View Article] [PubMed]
    [Google Scholar]
  198. Barr HL, Halliday N, Cámara M, Barrett DA, Williams P et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur Respir J 2015; 46:1046–1054 [View Article] [PubMed]
    [Google Scholar]
  199. Ambreetha S, Singh V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa. Microbiology 2023; 169:169 [View Article]
    [Google Scholar]
  200. Nelson LK, D’Amours GH, Sproule-Willoughby KM, Morck DW, Ceri H. Pseudomonas aeruginosa las and rhl quorum-sensing systems are important for infection and inflammation in a rat prostatitis model. Microbiology 2009; 155:2612–2619 [View Article]
    [Google Scholar]
  201. Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 2003; 112:1460–1465 [View Article] [PubMed]
    [Google Scholar]
  202. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177–192 [View Article] [PubMed]
    [Google Scholar]
  203. López CA, Zgurskaya H, Gnanakaran S. Molecular characterization of the outer membrane of Pseudomonas aeruginosa. Biochim Biophys Acta Biomembr 2020; 1862:183151 [View Article] [PubMed]
    [Google Scholar]
  204. Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463–476 [View Article] [PubMed]
    [Google Scholar]
  205. Nikaido H, Pagès J-M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2012; 36:340–363 [View Article] [PubMed]
    [Google Scholar]
  206. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C et al. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004; 48:1797–1802 [View Article] [PubMed]
    [Google Scholar]
  207. Poonsuk K, Tribuddharat C, Chuanchuen R. Simultaneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates. Can J Microbiol 2014; 60:437–443 [View Article] [PubMed]
    [Google Scholar]
  208. Piddock LJV. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4:629–636 [View Article] [PubMed]
    [Google Scholar]
  209. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002; 196:109–118 [View Article] [PubMed]
    [Google Scholar]
  210. Hächler H, Santanam P, Kayser FH. Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3’)-IIb, in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996; 40:1254–1256 [View Article] [PubMed]
    [Google Scholar]
  211. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007; 39:162–176 [View Article] [PubMed]
    [Google Scholar]
  212. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram negative bacteria. J Glob Infect Dis 2010; 2:263–274 [View Article] [PubMed]
    [Google Scholar]
  213. Taylor PK, Yeung ATY, Hancock REW. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 2014; 191:121–130 [View Article] [PubMed]
    [Google Scholar]
  214. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003; 5:1213–1219 [View Article] [PubMed]
    [Google Scholar]
  215. Moreau-Marquis S, Stanton BA, O’Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 2008; 21:595–599 [View Article] [PubMed]
    [Google Scholar]
  216. Khosravi AD, Motahar M, Abbasi Montazeri E. The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PLoS One 2017; 12:e0183061 [View Article] [PubMed]
    [Google Scholar]
  217. Park H, Park H-J, Kim JA, Lee SH, Kim JH et al. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J Microbiol Methods 2011; 84:41–45 [View Article] [PubMed]
    [Google Scholar]
  218. Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2018; 7: [View Article]
    [Google Scholar]
  219. Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS One 2018; 13:e0193431 [View Article] [PubMed]
    [Google Scholar]
  220. Yetiş Ö, Ali S, Karia K, Bassett P, Wilson P. Enhanced monitoring of healthcare shower water in augmented and non-augmented care wards showing persistence of Pseudomonas aeruginosa despite remediation work. J Med Microbiol 2023; 72: [View Article] [PubMed]
    [Google Scholar]
  221. Zichichi L, Asta G, Noto G. Pseudomonas aeruginosa folliculitis after shower/bath exposure. Int J Dermatol 2000; 39:270–273 [View Article] [PubMed]
    [Google Scholar]
  222. Yu Y, Cheng AS, Wang L, Dunne WM, Bayliss SJ. Hot tub folliculitis or hot hand-foot syndrome caused by Pseudomonas aeruginosa. J Am Acad Dermatol 2007; 57:596–600 [View Article] [PubMed]
    [Google Scholar]
  223. Trüeb RM, Elsner P, Burg G. Pseudomonas aeruginosa folliculitis after epilation. Hautarzt 1993; 44:103–105 [PubMed]
    [Google Scholar]
  224. Reid TMS, Porter IA. An outbreak of otitis externa in competitive swimmers due to Pseudomonas aeruginosa. J Hyg 1981; 86:357–362 [View Article] [PubMed]
    [Google Scholar]
  225. Seyfried PL, Cook RJ. Otitis externa infections related to Pseudomonas aeruginosa levels in five Ontario lakes. Can J Public Health / Revue Canadienne de Sante'e Publique 1984; 75:83–91
    [Google Scholar]
  226. Villedieu A, Papesh E, Weinberg SE, Teare L, Radhakrishnan J et al. Seasonal variation of Pseudomonas aeruginosa in culture positive otitis externa in South East England. Epidemiol Infect 2018; 146:1811–1812 [View Article] [PubMed]
    [Google Scholar]
  227. Mittal R, Grati M, Gerring R, Blackwelder P, Yan D et al. In Vitro interaction of Pseudomonas aeruginosa with human middle ear epithelial cells. PLoS One 2014; 9:e91885 [View Article]
    [Google Scholar]
  228. Brook I. The role of anaerobic bacteria in chronic suppurative otitis media in children: implications for medical therapy. Anaerobe 2008; 14:297–300 [View Article] [PubMed]
    [Google Scholar]
  229. Fletcher EL, Fleiszig S. Lipopolysaccharide in adherence of Pseudomonas aeruginosa to the Cornea and contact lenses. IOVS 1993; 34:1930–1936
    [Google Scholar]
  230. Fleiszig SMJ, Evans DJ. The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin Exp Optom 2002; 85:271–278 [View Article] [PubMed]
    [Google Scholar]
  231. Vazirani J, Wurity S, Ali MH. Multidrug-resistant Pseudomonas aeruginosa keratitis: risk factors, clinical characteristics, and outcomes. Ophthalmology 2015; 122:2110–2114 [View Article] [PubMed]
    [Google Scholar]
  232. Wilson LA, Schlitzer RL, Ahearn DG. Pseudomonas corneal ulcers associated with soft contact-lens wear. Am J Ophthalmol 1981; 92:546–554 [View Article] [PubMed]
    [Google Scholar]
  233. Zhang BN, Qi B, Chu WK, Song F, Li S et al. Norepinephrine as the intrinsic contributor to contact lens-induced Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2023; 64:26 [View Article] [PubMed]
    [Google Scholar]
  234. Dave A, Samarth A, Karolia R, Sharma S, Karunakaran E et al. Characterization of ocular clinical isolates of Pseudomonas aeruginosa from non-contact lens related keratitis patients from South India. Microorganisms 2020; 8:260 [View Article] [PubMed]
    [Google Scholar]
  235. Marzulli F, Evans J, Yoder P. Induced Pseudomonas keratitis as related to cosmetics. J Soc Cosmet Chem 1972; 23:89–97
    [Google Scholar]
  236. Reid FR, Wood TO. Pseudomonas corneal ulcer. The causative role of contaminated eye cosmetics. Arch Ophthalmol 1979; 97:1640–1641 [View Article] [PubMed]
    [Google Scholar]
  237. Norden CW, Keleti E. Experimental osteomyelitis caused by Pseudomonas aeruginosa. J Infect Dis 1980; 141:71–75 [View Article] [PubMed]
    [Google Scholar]
  238. Fisher MC, Goldsmith JF, Gilligan PH. Sneakers as a source of Pseudomonas aeruginosa in children with osteomyelitis following puncture wounds. J Pediatr Orthop 1985; 5:626 [View Article]
    [Google Scholar]
  239. Sapico FL, Montgomerie JZ. Vertebral osteomyelitis in intravenous drug abusers: report of three cases and review of the literature. Rev Infect Dis 1980; 2:196–206 [View Article] [PubMed]
    [Google Scholar]
  240. Wiesseman GJ, Wood VE, Kroll LL, Linda L. Pseudomonas vertebral osteomyelitis in heroin addicts. J Bone Jt Surg 1973; 55:1416–1424 [View Article]
    [Google Scholar]
  241. Meher SK, Jain H, Tripathy LN, Basu S. Chronic Pseudomonas aeruginosa cervical osteomyelitis. J Craniovert Jun Spine 2016; 7:276–278 [View Article]
    [Google Scholar]
  242. Wieland M, Lederman MM, Kline-King C, Keys TF, Lerner PI et al. Left-sided endocarditis due to Pseudomonas aeruginosa. A report of 10 cases and review of the literature. Medicine 1986; 65:180–189 [View Article] [PubMed]
    [Google Scholar]
  243. Walczak A, McCarthy K, Paterson DL. A contemporary case series of Pseudomonas aeruginosa infective endocarditis. Medicine 2023; 102:e32662 [View Article] [PubMed]
    [Google Scholar]
  244. Shekar R, Rice TW, Zierdt CH, Kallick CA. Outbreak of endocarditis caused by Pseudomonas aeruginosa serotype O11 among pentazocine and tripelennamine abusers in Chicago. J Infect Dis 1985; 151:203–208 [View Article] [PubMed]
    [Google Scholar]
  245. Osmon S, Ward S, Fraser VJ, Kollef MH. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 2004; 125:607–616 [View Article] [PubMed]
    [Google Scholar]
  246. Regules JA, Glasser JS, Wolf SE, Hospenthal DR, Murray CK. Endocarditis in burn patients: clinical and diagnostic considerations. Clinical and diagnostic considerations. Burns 2008; 34:610–616 [View Article] [PubMed]
    [Google Scholar]
  247. Ramireddy S, Gudipati S, Zervos M. Expect the unexpected: a rare case of Pseudomonas aeruginosa endocarditis. IDCases 2020; 21:e00787 [View Article] [PubMed]
    [Google Scholar]
  248. Lawrence MW, Sachdeva M, Bennett JW, Menninger GU, Barrera MA et al. Rare multidrug-resistant Pseudomonas aeruginosa identified in a U.S. Deployed service member following host-nation medical treatment. Mil Med 2021; 187:e773–e777 [View Article] [PubMed]
    [Google Scholar]
  249. Paprocka P, Durnaś B, Mańkowska A, Król G, Wollny T et al. Pseudomonas aeruginosa Infections in Cancer Patients. Pathogens 2022; 11:679 [View Article] [PubMed]
    [Google Scholar]
  250. Gargouri L, Maaloul I, Kamoun T, Maalej B, Safi F et al. Ecthyma gangrenosum: a manifestation of community-acquired Pseudomonas aeruginosa septicemia in three infants. Arch Pediatr 2015; 22:616–620 [View Article] [PubMed]
    [Google Scholar]
  251. Baro M, Marín MA, Ruiz-Contreras J, de Miguel SF, Sánchez-Díaz I. Pseudomonas aeruginosa sepsis and ecthyma gangrenosum as initial manifestations of primary immunodeficiency. Eur J Pediatr 2004; 163:173–174 [View Article] [PubMed]
    [Google Scholar]
  252. el Baze P, Thyss A, Vinti H, Deville A, Dellamonica P et al. A study of nineteen immunocompromised patients with extensive skin lesions caused by Pseudomonas aeruginosa with and without bacteremia. Acta Derm Venereol 1991; 71:411–415 [PubMed]
    [Google Scholar]
  253. Fergie JE, Shema SJ, Lott L, Crawford R, Patrick CC. Pseudomonas aeruginosa bacteremia in immunocompromised children: analysis of factors associated with a poor outcome. Clin Infect Dis 1994; 18:390–394 [View Article] [PubMed]
    [Google Scholar]
  254. Rolston KVI, Bodey GP. Pseudomonas aeruginosa infection in cancer patients. Cancer Invest 1992; 10:43–59 [View Article] [PubMed]
    [Google Scholar]
  255. Kielhofner M, Atmar RL, Hamill RJ, Musher DM. Life-threatening Pseudomonas aeruginosa infections in patients with human immunodeficiency virus infection. Clin Infect Dis 1992; 14:403–411 [View Article] [PubMed]
    [Google Scholar]
  256. Takase H, Nitanai H, Hoshino K, Otani T. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 2000; 68:1834–1839 [View Article] [PubMed]
    [Google Scholar]
  257. Liew KC, O’Keeffe J, Rajandas H, Lee YP, Harris O et al. Insights into the evolution of P. aeruginosa antimicrobial resistance in a patient undergoing intensive therapy. Antibiotics 2023; 12:483 [View Article] [PubMed]
    [Google Scholar]
  258. Flores G, Stavola JJ, Noel GJ. Bacteremia due to Pseudomonas aeruginosa in children with AIDS. Clin Infect Dis 1993; 16:706–708 [View Article] [PubMed]
    [Google Scholar]
  259. Dropulic LK, Leslie JM, Eldred LJ, Zenilman J, Sears CL. Clinical manifestations and risk factors of Pseudomonas aeruginosa infection in patients with AIDS. J Infect Dis 1995; 171:930–937 [View Article] [PubMed]
    [Google Scholar]
  260. Mendelson MH, Gurtman A, Szabo S, Neibart E, Meyers BR et al. Pseudomonas aeruginosa bacteremia in patients with AIDS. Clin Infect Dis 1994; 18:886–895 [View Article] [PubMed]
    [Google Scholar]
  261. Meyer CN, Skinhøj P, Prag J. Bacteremia in HIV-positive and AIDS patients: incidence, species distribution, risk-factors, outcome, and influence of long-term prophylactic antibiotic treatment. Scand J Infect Dis 1994; 26:635–642 [View Article] [PubMed]
    [Google Scholar]
  262. Meng Z, Duan R, Lv D, Bu G, Gao Y et al. Rare case of bacteremia due to Lysinibacillus sphaericus in a person living with HIV. Int J Infect Dis 2023; 135:91–94 [View Article] [PubMed]
    [Google Scholar]
  263. Afessa B, Green B. Bacterial pneumonia in hospitalized patients with HIV infection: the pulmonary complications, ICU support, and prognostic factors of hospitalized patients with HIV (PIP) study. Chest 2000; 117:1017–1022 [View Article] [PubMed]
    [Google Scholar]
  264. Franzetti F, Grassini A, Piazza M, Degl’innocenti M, Bandera A et al. Nosocomial bacterial pneumonia in HIV-infected patients: risk factors for adverse outcome and implications for rational empiric antibiotic therapy. Infection 2006; 34:9–16 [View Article] [PubMed]
    [Google Scholar]
  265. Busi Rizzi E, Schininà V, Bordi E, Buontempo G, Narciso P et al. HIV-related bronchopulmonary infection by Pseudomonas aeruginosa in the HAART era: radiological findings. Acta Radiol 2006; 47:793–797 [View Article] [PubMed]
    [Google Scholar]
  266. Domingo P, Ferré A, Baraldès MA, Ris J, Sánchez F. Pseudomonas aeruginosa bronchopulmonary infection in patients with AIDS, with emphasis on relapsing infection. Eur Respir J 1998; 12:107–112 [View Article] [PubMed]
    [Google Scholar]
  267. Curtin JA, Petersdorf RG, Bennett IL. Pseudomonas bacteremia: review of ninety-one cases. Ann Intern Med 1961; 54:1077–1107 [View Article]
    [Google Scholar]
  268. Hersh EM, Bodey GP, Nies BA, Freireich EJ. Causes of death in acute leukemia: a ten year study of 414 patients from 1954-1963. JAMA 1965; 193:105–109 [View Article] [PubMed]
    [Google Scholar]
  269. Chang HY, Rodriguez V, Narboni G, Bodey GP, Luna MA et al. Causes of death in adults with acute leukemia. Medicine 1976; 55:259–268 [View Article] [PubMed]
    [Google Scholar]
  270. Tapper ML, Armstrong D. Bacteremia due to Pseudomonas aeruginosa complicating neoplastic disease: a progress report. J Infect Dis 1974; 130:S14–S23 [View Article] [PubMed]
    [Google Scholar]
  271. Schimpff SC, Greene WH, Young VM, Wiernik PH. Significance of Pseudomonas aeruginosa in the patient with leukemia or lymphoma. J Infect Dis 1974; 130:S24–S31 [View Article] [PubMed]
    [Google Scholar]
  272. Bodey GP, Jadeja L, Elting L. Pseudomonas bacteremia. Retrospective analysis of 410 episodes. Arch Intern Med 1985; 145:1621–1629 [View Article] [PubMed]
    [Google Scholar]
  273. Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ et al. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med 2000; 160:501–509 [View Article] [PubMed]
    [Google Scholar]
  274. Maschmeyer G, Braveny I. Review of the incidence and prognosis of Pseudomonas aeruginosa infections in cancer patients in the 1990s. Eur J Clin Microbiol Infect Dis 2000; 19:915–925 [View Article] [PubMed]
    [Google Scholar]
  275. Varaiya A, Kulkarni M, Bhalekar P, Dogra J. Incidence of metallo-beta-lactamase-producing Pseudomonas aeruginosa in diabetes and cancer patients. Indian J Pathol Microbiol 2008; 51:200–203 [View Article] [PubMed]
    [Google Scholar]
  276. Marin M, Gudiol C, Ardanuy C, Garcia-Vidal C, Calvo M et al. Bloodstream infections in neutropenic patients with cancer: differences between patients with haematological malignancies and solid tumours. J Infect 2014; 69:417–423 [View Article] [PubMed]
    [Google Scholar]
  277. McCarthy KL, Paterson DL. Long-term mortality following Pseudomonas aeruginosa bloodstream infection. J Hosp Infect 2017; 95:292–299 [View Article] [PubMed]
    [Google Scholar]
  278. Lizioli A, Privitera G, Alliata E, Antonietta Banfi EM, Boselli L et al. Prevalence of nosocomial infections in Italy: result from the Lombardy survey in 2000. J Hosp Infect 2003; 54:141–148 [View Article] [PubMed]
    [Google Scholar]
  279. Langley JM, Hanakowski M, Leblanc JC. Unique epidemiology of nosocomial urinary tract infection in children. Am J Infect Control 2001; 29:94–98 [View Article] [PubMed]
    [Google Scholar]
  280. Eckmanns T, Oppert M, Martin M, Amorosa R, Zuschneid I et al. An outbreak of hospital-acquired Pseudomonas aeruginosa infection caused by contaminated bottled water in intensive care units. Clin Microbiol Infect 2008; 14:454–458 [View Article] [PubMed]
    [Google Scholar]
  281. Vincent J-L, Sakr Y, Singer M, Martin-Loeches I, Machado FR et al. Prevalence and outcomes of infection among patients in Intensive Care Units in 2017. JAMA 2020; 323:1478–1487 [View Article] [PubMed]
    [Google Scholar]
  282. Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2014; 3:32 [View Article] [PubMed]
    [Google Scholar]
  283. Ramos GP, Rocha JL, Tuon FF. Seasonal humidity may influence Pseudomonas aeruginosa hospital-acquired infection rates. Int J Infect Dis 2013; 17:e757–e761 [View Article] [PubMed]
    [Google Scholar]
  284. Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother 2005; 56:1148–1151 [View Article] [PubMed]
    [Google Scholar]
  285. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2015; 34:1–14 [View Article] [PubMed]
    [Google Scholar]
  286. Lynch JP. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest 2001; 119:373S–384S [View Article] [PubMed]
    [Google Scholar]
  287. Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ et al. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 2005; 128:3854–3862 [View Article] [PubMed]
    [Google Scholar]
  288. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165:867–903 [View Article] [PubMed]
    [Google Scholar]
  289. Gregson AL, Wang X, Weigt SS, Palchevskiy V, Lynch JP et al. Interaction between Pseudomonas and CXC chemokines increases risk of bronchiolitis obliterans syndrome and death in lung transplantation. Am J Respir Crit Care Med 2013; 187:518–526 [View Article] [PubMed]
    [Google Scholar]
  290. Shigemura K, Osawa K, Kato A, Tokimatsu I, Arakawa S et al. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot 2015; 68:568–572 [View Article] [PubMed]
    [Google Scholar]
  291. Geyik MF, Aldemir M, Hosoglu S, Tacyildiz HI. Epidemiology of burn unit infections in children. Am J Infect Control 2003; 31:342–346 [View Article] [PubMed]
    [Google Scholar]
  292. Yildirim S, Nursal TZ, Tarim A, Torer N, Noyan T et al. Bacteriological profile and antibiotic resistance: comparison of findings in a burn intensive care unit, other intensive care units, and the hospital services unit of a single center. J Burn Care Rehabil 2005; 26:488–492 [View Article] [PubMed]
    [Google Scholar]
  293. Lari AR, Alaghehbandan R, Nikui R. Epidemiological study of 3341 burns patients during three years in Tehran, Iran. Burns 2000; 26:49–53 [View Article] [PubMed]
    [Google Scholar]
  294. Lari AR, Alaghehbandan R. Nosocomial infections in an Iranian burn care center. Burns 2000; 26:737–740 [View Article] [PubMed]
    [Google Scholar]
  295. Song W, Lee KM, Kang HJ, Shin DH, Kim DK. Microbiologic aspects of predominant bacteria isolated from the burn patients in Korea. Burns 2001; 27:136–139 [View Article] [PubMed]
    [Google Scholar]
  296. Husain MT, Karim QN, Tajuri S. Analysis of infection in a burn ward. Burns 1989; 15:299–302 [View Article] [PubMed]
    [Google Scholar]
  297. Cerioli M, Batailler C, Conrad A, Roux S, Perpoint T et al. Pseudomonas aeruginosa Implant-Associated Bone and Joint Infections: Experience in a Regional Reference Center in France. Front Med 2020; 7:513242 [View Article] [PubMed]
    [Google Scholar]
  298. Srinivasan A, Wolfenden LL, Song X, Mackie K, Hartsell TL et al. An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. N Engl J Med 2003; 348:221–227 [View Article] [PubMed]
    [Google Scholar]
  299. Cryan EMJ, Falkiner FR, Mulvihill TE, Keane CT, Keeling PWN. Pseudomonas aeruginosa cross-infection following endoscopic retrograde cholangiopancreatography. J Hosp Infect 1984; 5:371–376 [View Article] [PubMed]
    [Google Scholar]
  300. Lenti MV, Girardi D, Muzzi A, Novelli V, Di Sabatino A et al. Prevalence and risk factors for multi-drug resistant bacterial infections in patients undergoing endoscopic retrograde cholangiopancreatography. Dig Liver Dis 2023; 55:1447–1449 [View Article] [PubMed]
    [Google Scholar]
  301. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194–222 [View Article] [PubMed]
    [Google Scholar]
  302. Saiman L. Microbiology of early CF lung disease. Paediatr Respir Rev 2004; 5:S367–S369 [View Article] [PubMed]
    [Google Scholar]
  303. Crull MR, Somayaji R, Ramos KJ, Caldwell E, Mayer-Hamblett N et al. Changing rates of chronic Pseudomonas aeruginosa infections in cystic fibrosis: a population-based cohort study. Clin Infect Dis 2018; 67:1089–1095 [View Article] [PubMed]
    [Google Scholar]
  304. Bruce C, Marshal MD. Cystic Fibrosis Foundation Patient Registry 2017: Annual Data Report 2017
    [Google Scholar]
  305. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002; 34:91–100 [View Article] [PubMed]
    [Google Scholar]
  306. Gaspar MC, Couet W, Olivier J-C, Pais AACC, Sousa JJS. Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review. Eur J Clin Microbiol Infect Dis 2013; 32:1231–1252 [View Article] [PubMed]
    [Google Scholar]
  307. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245:1066–1073 [View Article] [PubMed]
    [Google Scholar]
  308. Romeo G, Devoto M, Galietta LJ. Why is the cystic fibrosis gene so frequent?. Hum Genet 1989; 84:1–5 [View Article] [PubMed]
    [Google Scholar]
  309. Farrell PM. The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 2008; 7:450–453 [View Article] [PubMed]
    [Google Scholar]
  310. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168:918–951 [View Article] [PubMed]
    [Google Scholar]
  311. Bernardy EE, Raghuram V, Goldberg JB. Staphylococcus aureus and Pseudomonas aeruginosa isolates from the same cystic fibrosis respiratory sample coexist in coculture. Microbiol Spectr 2022; 10:e00976-22 [View Article] [PubMed]
    [Google Scholar]
  312. Limoli DH, Yang J, Khansaheb MK, Helfman B, Peng L et al. Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes. Eur J Clin Microbiol Infect Dis 2016; 35:947–953 [View Article] [PubMed]
    [Google Scholar]
  313. Hubert D, Réglier-Poupet H, Sermet-Gaudelus I, Ferroni A, Le Bourgeois M et al. Association between Staphylococcus aureus alone or combined with Pseudomonas aeruginosa and the clinical condition of patients with cystic fibrosis. J Cyst Fibros 2013; 12:497–503 [View Article] [PubMed]
    [Google Scholar]
  314. Doud MS, Light M, Gonzalez G, Narasimhan G, Mathee K. Combination of 16S rRNA variable regions provides a detailed analysis of bacterial community dynamics in the lungs of cystic fibrosis patients. Hum Genomics 2010; 4:147–169 [View Article] [PubMed]
    [Google Scholar]
  315. Haase G, Skopnik H, Groten T, Kusenbach G, Posselt HG. Long-term fungal culture of sputum from patients with cystic fibrosis. Mycoses 1991; 34:49–52 [PubMed]
    [Google Scholar]
  316. Hoiby N, Flensborg EW, Beck B, Friis B, Jacobsen SV et al. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand J Respir Dis 1977; 58:65–79 [PubMed]
    [Google Scholar]
  317. Miniño AM, Xu J, Kochanek KD. National vital statistics reports. Natl Vital Stat Rep 201159
    [Google Scholar]
  318. Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). parallel epidemics of the 21 century. Int J Environ Res Public Health 2009; 6:209–224 [View Article] [PubMed]
    [Google Scholar]
  319. Gaude GS, Rajesh BP, Chaudhury A, Hattiholi J. Outcomes associated with acute exacerbations of chronic obstructive pulmonary disorder requiring hospitalization. Lung India : Official Organ of Indian Chest Society 2015; 32:465–472 [View Article]
    [Google Scholar]
  320. White AJ, Gompertz S, Stockley RA. Chronic obstructive pulmonary disease. 6: the aetiology of exacerbations of chronic obstructive pulmonary disease. Thorax 2003; 58:73–80 [View Article] [PubMed]
    [Google Scholar]
  321. Murphy TF. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med 2009; 15:138–142 [View Article] [PubMed]
    [Google Scholar]
  322. Martinez-García MA, Rigau D, Barrecheguren M, García-Ortega A, Nuñez A et al. Long-term risk of mortality associated with isolation of Pseudomonas aeruginosa in COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:371–382 [View Article] [PubMed]
    [Google Scholar]
  323. Lieberman D, Lieberman D. Pseudomonal infections in patients with COPD. Treat Respir Med 2003; 2:459–468 [View Article] [PubMed]
    [Google Scholar]
  324. Martínez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis 2008; 47:1526–1533 [View Article] [PubMed]
    [Google Scholar]
  325. Rodrigo-Troyano A, Suarez-Cuartin G, Peiró M, Barril S, Castillo D et al. Pseudomonas aeruginosa resistance patterns and clinical outcomes in hospitalized exacerbations of COPD. Respirology 2016; 21:1235–1242 [View Article] [PubMed]
    [Google Scholar]
  326. Ali Siddiqui I, Ehteshamul-Haque S. Suppression of the root rot–root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 2001; 237:81–89 [View Article]
    [Google Scholar]
  327. Adesemoye AO, Ugoji EO. Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria in West Africa. Arch Phytopathol Plant Protect 2009; 42:188–200 [View Article]
    [Google Scholar]
  328. Yasmin S, Hafeez FY, Rasul G. Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum. Bio Control Sci Techn 2014; 24:1227–1242 [View Article]
    [Google Scholar]
  329. Radhapriya P, Ramachandran A, Anandham R, Mahalingam S. Pseudomonas aeruginosa RRALC3 enhances the biomass, nutrient and carbon contents of pongamia pinnata seedlings in degraded forest soil. PLoS One 2015; 10:e0139881 [View Article] [PubMed]
    [Google Scholar]
  330. Arif MS, Riaz M, Shahzad SM, Yasmeen T, Akhtar MJ et al. Associative interplay of plant growth promoting rhizobacteria (Pseudomonas aeruginosa QS40) with nitrogen fertilizers improves sunflower (Helianthus annuus L.) productivity and fertility of aridisol. Appl Soil Ecol 2016; 108:238–247 [View Article]
    [Google Scholar]
  331. Durairaj K, Velmurugan P, Park J-H, Chang W-S, Park Y-J et al. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett 2017; 364:fnx225 [View Article] [PubMed]
    [Google Scholar]
  332. Gupta V, Buch A. Pseudomonas aeruginosa predominates as multifaceted rhizospheric bacteria with combined abilities of P-solubilization and biocontrol. J Pure Appl Microbiol 2019; 13:319–328 [View Article]
    [Google Scholar]
  333. Chandra H, Kumari P, Bisht R, Prasad R, Yadav S. Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Mol Biol Rep 2020; 47:6015–6026 [View Article] [PubMed]
    [Google Scholar]
  334. Clara F. A new bacterial leaf disease of tobacco in the Philippines. Phytopathol 1930; 20:691–706
    [Google Scholar]
  335. Elrod RP, Braun AC. Pseudomonas aeruginosa: its rôle as a plant pathogen. J Bacteriol 1942; 44:633–645 [View Article] [PubMed]
    [Google Scholar]
  336. Cother EJ. Pseudomonas aeruginosa: cause of internal brown rot of onion. Phytopathology 1976; 66:828–834 [View Article]
    [Google Scholar]
  337. Mondal KK, Mani C, Singh J, Dave SR, Tipre DR et al. Fruit rot of tinda caused by Pseudomonas aeruginosa – A new report from India. Plant Dis 2012; 96:141–142 [View Article] [PubMed]
    [Google Scholar]
  338. Gao J, Wang Y, Wang CW, Lu BH. First report of bacterial root rot of ginseng caused by Pseudomonas aeruginosa in China. Plant Dis 2014; 98:1577 [View Article] [PubMed]
    [Google Scholar]
  339. Tiwari P, Singh JS. A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 2017; 8: [View Article] [PubMed]
    [Google Scholar]
  340. Shanmugam V, Thakur H, Surender P, Bhadwal P, Mahajan S et al. First report of collar rot caused by Pseudomonas aeruginosa on calla lily (Zantedeschia elliottiana). Phytopathol Mediterr 2016; 55:427–431
    [Google Scholar]
  341. Obaton M, Amarger N, Alexander M. Heterotrophic nitrification by Pseudomonas aeruginosa. Archiv Mikrobiol 1968; 63:122–132 [View Article]
    [Google Scholar]
  342. Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 1992; 24:389–395 [View Article]
    [Google Scholar]
  343. Fasim F, Ahmed N, Parsons R, Gadd GM. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 2002; 213:1–6 [View Article] [PubMed]
    [Google Scholar]
  344. Jha BK, Gandhi Pragash M, Cletus J, Raman G, Sakthivel N. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 2009; 25:573–581 [View Article]
    [Google Scholar]
  345. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 2015; 7:096–102
    [Google Scholar]
  346. Adesemoye AO, Obini M, Ugoji EO. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 2008; 39:423–426 [View Article] [PubMed]
    [Google Scholar]
  347. Ahemad M, Khan MS. Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 2010; 58:361–372 [View Article] [PubMed]
    [Google Scholar]
  348. Roychowdhury R, Qaiser TF, Mukherjee P, Roy M. Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion. Proc Natl Acad Sci, India, Sect B Biol Sci 2019; 89:353–360 [View Article]
    [Google Scholar]
  349. Minaxi Saxena J. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent. Mycopathologia 2010; 170:181–193 [View Article] [PubMed]
    [Google Scholar]
  350. Bakthavatchalu S, Shivakumar S, Sullia SB. Molecular detection of antibiotic related genes from Pseudomonas aeruginosa FP6, an antagonist towards rhizoctonia solani and Colletotrichum gloeosporioides. Turk J Biol 2013; 37:289–295 [View Article]
    [Google Scholar]
  351. Biswas JK, Mondal M, Rinklebe J, Sarkar SK, Chaudhuri P et al. Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. Environ Geochem Health 2017; 39:1583–1593 [View Article] [PubMed]
    [Google Scholar]
  352. Ali MA, Lee CH, Kim SY, Kim PJ. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manag 2009; 29:2759–2764 [View Article] [PubMed]
    [Google Scholar]
  353. Tank N, Saraf M. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 2010; 5:51–58 [View Article]
    [Google Scholar]
  354. Sarma RK, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 2014; 377:111–126 [View Article]
    [Google Scholar]
  355. Kumawat KC, Sharma P, Sirari A, Singh I, Gill BS et al. Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol 2019; 35:47 [View Article] [PubMed]
    [Google Scholar]
  356. Naseem H, Bano A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 2014; 9:689–701 [View Article]
    [Google Scholar]
  357. Tewari S, Arora NK. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 2014; 69:484–494 [View Article] [PubMed]
    [Google Scholar]
  358. Nair PKR. State-of-the-art of agroforestry systems. Forest Ecol Manag 1991; 45:5–29 [View Article]
    [Google Scholar]
  359. Oves M, Khan MS, Zaidi A. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Euro J Soil Biol 2013; 56:72–83 [View Article]
    [Google Scholar]
  360. Ganesan V. Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 2008; 56:403–407 [View Article] [PubMed]
    [Google Scholar]
  361. Kloepper JW, Leong J, Teintze M, Schroth MN. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 1980; 4:317–320 [View Article]
    [Google Scholar]
  362. Cartwright DK, Chilton WS, Benson DM. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 1995; 43:211–216 [View Article]
    [Google Scholar]
  363. De Meyer G, Höfte M. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathol 1997; 87:588–593 [View Article] [PubMed]
    [Google Scholar]
  364. D’aes J, Hua GKH, De Maeyer K, Pannecoucque J, Forrez I et al. Biological control of rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 2011; 101:996–1004 [View Article] [PubMed]
    [Google Scholar]
  365. Stanghellini ME, Miller RM. Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 1997; 81:4–12 [View Article] [PubMed]
    [Google Scholar]
  366. Varnier A-L, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 2009; 32:178–193 [View Article] [PubMed]
    [Google Scholar]
  367. Sanchez PA, Palm CA, Buol SW. Fertility capability soil classification: a tool to help assess soil quality in the tropics. Geoderma 2003; 114:157–185 [View Article]
    [Google Scholar]
  368. Monnier N, Furlan A, Botcazon C, Dahi A, Mongelard G et al. Rhamnolipids From Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. Front Plant Sci 2018; 9: [View Article] [PubMed]
    [Google Scholar]
  369. Chopra A, Bobate S, Rahi P, Banpurkar A, Mazumder PB et al. Pseudomonas aeruginosa RTE4: a tea rhizobacterium with potential for plant growth promotion and biosurfactant production. Front Bioeng Biotechnol 2020; 8:861 [View Article] [PubMed]
    [Google Scholar]
  370. Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K et al. Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 2008; 10:778–788 [View Article] [PubMed]
    [Google Scholar]
  371. Kishore GK, Pande S, Rao JN, Podile AR. Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eur J Plant Pathol 2005; 113:315–320 [View Article]
    [Google Scholar]
  372. Yu L, Qin XY, Du J, Wang AY, Zhao YY et al. Bacterial leaf spot of tobacco caused by Pseudomonas aeruginosa in China. Plant Pathol 2008; 57:774–777 [View Article]
    [Google Scholar]
  373. Chahtane H, Nogueira Füller T, Allard P-M, Marcourt L, Ferreira Queiroz E et al. The plant pathogen Pseudomonas aeruginosa triggers a DELLA-dependent seed germination arrest in Arabidopsis. eLife 2018; 7:e37082 [View Article] [PubMed]
    [Google Scholar]
  374. Yorgey P, Rahme LG, Tan M-W, Ausubel FM. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol 2001; 41:1063–1076 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001791
Loading
/content/journal/jmm/10.1099/jmm.0.001791
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error