Skip to main content
Log in

Analysis of traffic in communication networks based on percolation transition

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Studying the phase transition process from free flow to congested state in communication networks is one of the hot topics of dynamically complex systems, and many related theoretical and computational efforts have been made to improve traffic systems’ organization and load management. A criterion to measure the organization efficiency of the system is the formation process of a global traffic flow cluster from local small clusters in a communication network which can be evaluated by measuring the percolation threshold. While little attention has been paid to percolation in such studies, in this research, the traffic percolation threshold is defined based on the system nodes’ loads to examine the influences of the network structures, different routing strategies, and distributions of transmission capacities on the efficiency of the communication networks. Considering the obtained results, it was found any variation in the network structure and traffic control strategies that leads to a rather diverse load distribution among the system’s nodes can organize traffic loads more efficiently.

Graphical abstract

An agent-based model is employed finding modified approaches to better managing traffic loads, considering percolation transition analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Nagel, M. Schreckenberg, J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  2. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51(2), 1035 (1995)

    Article  ADS  CAS  Google Scholar 

  3. B.S. Kerner, Phys. Rev. Lett. 81(17), 3797 (1998)

    Article  ADS  CAS  Google Scholar 

  4. D. Helbing, B.A. Huberman, Nature 396(6713), 738–740 (1998)

    Article  ADS  CAS  Google Scholar 

  5. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62(2), 1805 (2000)

    Article  ADS  CAS  Google Scholar 

  6. P. Echenique, J. Gómez-Gardenes, Y. Moreno, Europhys. Lett. 71(2), 325 (2005)

    Article  ADS  CAS  Google Scholar 

  7. B.S. Kerner, Phys. World 12(8), 25 (1999)

    Article  Google Scholar 

  8. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329(4–6), 199–329 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Helbing, Rev. Mod. Phys. 73(4), 1067 (2001)

    Article  ADS  Google Scholar 

  10. Z. Liu, M.B. Hu, R. Jiang, W.X. Wang, Q.S. Wu, Phys. Rev. E 76(3), 037101 (2007)

    Article  ADS  Google Scholar 

  11. A. Zeng, W. Liu, Phys. Rev. E 85(6), 066130 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Wu, Z.Y. Gao, H.J. Sun, Physica A 378(2), 505–511 (2007)

    Article  ADS  Google Scholar 

  13. C. Shi, Y. Peng, Y. Zhuo, J. Tang, K. Long, Phys. Scr. 85(3), 035803 (2012)

    Article  ADS  Google Scholar 

  14. X. Ling, M.B. Hu, R. Jiang, Q.S. Wu, Phys. Rev. E 81(1), 016113 (2010)

    Article  ADS  Google Scholar 

  15. T. Fei, Y. Xia, Physica A 392(18), 4146–4153 (2013)

    Article  ADS  Google Scholar 

  16. Z. Xi, Z. Zhou, D. Cheng, PLoS One 12(2), 0172035 (2017)

    Google Scholar 

  17. O. Kinouchi, M. Copelli, Nat. Phys. 2(5), 348–351 (2006)

    Article  CAS  Google Scholar 

  18. T. Mora, W. Bialek, J. Stat. Phys. 144, 268–302 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Hidalgo, J. Grilli, S. Suweis, M.A. Munoz, J.R. Banavar, A. Maritan, Proc. Natl. Acad. Sci. 111(28), 10095–10100 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. Dabrowski, Comput. Sci. Rev. 18, 10–45 (2015)

    Article  MathSciNet  Google Scholar 

  21. F. Aghaei, A. Lohrasebi, Eur. Phys. J. Plus 136(11), 1111 (2021)

    Article  Google Scholar 

  22. S. Ebrahimabadi, A. Hosseiny, J. Fan, A.A. Saberi, Phys. Rev. E 108, 054311 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. D. Stauffer, A. Aharony, Introduction to percolation theory (Second Edn), CRC Press (2018). https://doi.org/10.1201/9781315274386

  24. M. Sahimi, Applications of percolation theory (Second Edition), Springer (2023). https://doi.org/10.1007/978-3-031-20386-2

  25. D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H.E. Stanley, S. Havlin, Proc. Natl. Acad. Sci. 112(3), 669–672 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. A.H. Shirazi, A.A. Saberi, A. Hosseiny, E. Amirzadeh, P. Toranj Simin, Sci. Rep. 7, 15855 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. F. Wang, D. Li, X. Xu, R. Wu, S. Havlin, Europhys. Lett. 112(3), 38001 (2015)

    Article  ADS  Google Scholar 

  28. S. Li, H. Yang, M. Li, J. Dai, P. Wang, Sustainability 15(16), 12608 (2023)

  29. D. De Martino, L. Dall’Asta, G. Bianconi, M. Marsili, Phys. Rev. E 79(1), 015101 (2009)

    Article  ADS  Google Scholar 

  30. D.J. Watts, S.H. Strogatz, Nature 393(6684), 440–442 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. A.L. Barabási, R. Albert, Science 286(5439), 509–512 (1999)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  32. W.X. Wang, B.H. Wang, C.Y. Yin, Y.B. Xie, T. Zhou, Phys. Rev. E 73(2), 026111 (2006)

    Article  ADS  Google Scholar 

  33. B. Danila, Y. Yu, S. Earl, J.A. Marsh, Z. Toroczkai, K.E. Bassler, Phys. Rev. E 74(4), 046114 (2006)

    Article  ADS  Google Scholar 

  34. W.X. Wang, C.Y. Yin, G. Yan, B.H. Wang, Phys. Rev. E 74(1), 016101 (2006)

    Article  ADS  Google Scholar 

  35. L. Page, S. Brin, R. Motwani, T. Winograd (1998) The PageRank Citation Ranking: Bringing Order to the Web. Technical Report SIDL-WP-1999-0120, Stanford Digital Library Technologies Project

  36. G. Sabidussi, Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  37. M.A. Munoz, Rev. Mod. Phys. 9(3), 031001 (2018)

    Article  ADS  Google Scholar 

  38. D. De Martino, L. Dall’Asta, G. Bianconi, M. Marsili, J. Stat. Mech.: Theory Exp. 08, P08023 (2009)

    Google Scholar 

  39. F. Santo, M. Boguñá, A. Flammini, F. Menczer, Approximating PageRank from in-degree, in W. Aiello, A. Broder, J. Janssen, E. Milios, editors. Algorithms and Models for the Web-Graph. WAW 2006. Lecture Notes in Computer Science, vol. 4936. Springer, Berlin (2008)

Download references

Funding

There is no significant financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Amir Lohrasebi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, F., Lohrasebi, A. Analysis of traffic in communication networks based on percolation transition. Eur. Phys. J. B 97, 17 (2024). https://doi.org/10.1140/epjb/s10051-024-00652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00652-0

Navigation