Skip to main content
Log in

Progress of isotope separators and KISS facility for the study of exotic nuclei

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Facilities equipped with two major types of isotope separators—Isotope Separation On-Line (ISOL) and in-flight separators—have produced many types of unstable nuclei and have provided opportunities to study their exotic properties successfully. Gas-cell systems have been developed for both types of radioactive-ion (RI) facilities, enabling the performance of a great variety of nuclear-spectroscopic measurements by compensating for their respective disadvantages in the production and purification of the RI beams. Although many nuclear-spectroscopic studies have been performed in both types of RI facilities by applying \(^{238}\)U target (ISOL) or \(^{238}\)U beam (in-flight), two major unexplored regions remain on the nuclear chart located in the regions of the refractory elements in the vicinity of \(Z=\) 73–78 and \(N=\) 126 and in the actinide elements. Because it is hard or almost impossible to produce the neutron-rich nuclei, which require specific nuclear reactions for the productions, in these unexplored regions. To access these regions and perform nuclear spectroscopy there, the KEK Isotope Separation System (KISS)—an argon-gas-cell-based laser ion source—has been developed and operated. The gas-cell system at the KISS facility is dedicated to multinucleon transfer (MNT) reactions for producing heavy, neutron-rich nuclei in the unexplored regions. Here, we introduce some of the experimental results and discuss a plan to upgrade the facility to promote further nuclear spectroscopy of the nuclei in the unexplored regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. H.L. Ravn, B.W. Allardyce, On-line mass separators, in Treatise on Heavy-Ion Science Nuclei Far From Stability, vol. 8, ed. by D.A. Bromley (Plenum Press, New York, 1989), pp.363–439

    Chapter  Google Scholar 

  2. P. Van Duppen, Isotope separation on line and post acceleration, in The Euroschool Lectures on Physics with Exotic Beams, Vol. II. Lecture Notes, in Physics. ed. by J. Al-Khalili, E. Roeckl, vol. 700 (Springer, Berlin, Heidelberg, 2006), pp.37–77

  3. T. Nakamura, H. Sakurai, H. Watanabe, Exotic nuclei explored at in-flight separators. Prog. Part. Nucl. Phys. 97, 53–122 (2017). https://doi.org/10.1016/j.ppnp.2017.05.001

    Article  CAS  ADS  Google Scholar 

  4. https://isolde.cern/. Accessed 17 Jan 2024

  5. M. Huyse, P. van Duppen, Low and medium energy radioactive ion beams at Louvain-la-Neuve, Belgium. Nucl. Instrum. Methods Phys. Res. B 56(57), 525–527 (1991). https://doi.org/10.1016/0168-583X(91)96086-Z

    Article  ADS  Google Scholar 

  6. I. Tanihata, Nuclear physics using unstable nuclear beams. Hyper. Interact. 21, 251–264 (1985). https://doi.org/10.1007/BF02061988

    Article  ADS  Google Scholar 

  7. T. Kubo, D. Kameda, H. Suzuki et al., BigRIPS separator and zero degree spectrometer at RIKEN RI beam factory. Prog. Theor. Exp. Phys. 2012, 03C003 (2012). https://doi.org/10.1093/ptep/pts064

    Article  Google Scholar 

  8. P. Dendooven, The development and status of the IGISOL technique. Nucl. Instrum. Methods Phys. Res. B 126, 182 (1997). https://doi.org/10.1016/S0168-583X(96)01010-5

    Article  CAS  ADS  Google Scholar 

  9. Yu. Kudryavtsev, J. Andrzejewski, N. Bijnens et al., Beams of short lived nuclei produced by selective laser ionization in a gas cell. Nucl. Instrum. Methods Phys. Res. B 114, 350 (1996). https://doi.org/10.1016/0168-583X(96)00194-2

    Article  CAS  ADS  Google Scholar 

  10. M. Wada et al., Slow RI-beams from projectile fragment separators. Nucl. Instr. Methods B 204, 570 (2003). https://doi.org/10.1016/S0168-583X(02)02151-1

    Article  CAS  ADS  Google Scholar 

  11. D.J. Morrissey, Extraction of thermalized projectile fragments from gas. Eur. Phys. J. Spec. Top. 150, 356 (2007). https://doi.org/10.1140/epjst/e2007-00348-7

    Article  Google Scholar 

  12. W.R. Plaß et al., The FRS ion catcher–a facility for high-precision experiments with stopped projectile and fission fragments. Nucl. Instr. Methods B 317, 457 (2013). https://doi.org/10.1016/j.nimb.2013.07.063

    Article  CAS  ADS  Google Scholar 

  13. S.C. Jeong et al., KISS:KEK Isotope Separation System for \(\beta\)-decay Spectroscopy. KEK Report 2010-2 (2010)

  14. T. Aoki et al., in Design Report of the KISS-II Facility for Exploring the Origin of Uranium, KEK report, 2022-2 ed. by Y.X. Watanabe and Y. Hirayama. arXiv:2209.12649v2, (2022). https://arxiv.org/abs/2209.12649

  15. Y. Hirayama et al., Laser ion source for multi-nucleon transfer reaction products. Nucl. Instrum. Methods Phys. Res. B 353, 4 (2015). https://doi.org/10.1016/j.nimb.2015.04.001

    Article  CAS  ADS  Google Scholar 

  16. Y. Hirayama et al., Doughnut-shaped gas cell for KEK isotope separation system. Nucl. Instrum. Methods Phys. Res. B 412, 11 (2017). https://doi.org/10.1016/j.nimb.2017.08.037

    Article  CAS  ADS  Google Scholar 

  17. https://www.triumf.ca/research-program/research-facilities/isac-facilities. Accessed 17 Jan 2024

  18. J. Ballof et al., A concept for the extraction of the most refractory elements at CERN-ISOLDE as carbonyl complex ions. arXiv:2108.01745v1 (2021)

  19. R.D. Harding, A.N. Andreyev, A.E. Barzakh et al., Laser-assisted nuclear decay spectroscopy of \(^{176,177,179}\)Au. Phys. Rev. C 104, 024326 (2021). https://doi.org/10.1103/PhysRevC.104.024326

    Article  CAS  ADS  Google Scholar 

  20. H. Nishibata, K. Tajiri, T. Shimioda et al., Structure of the neutron-rich nucleus \(^{30}\)Mg. Phys. Rev. C 102, 054327 (2020). https://doi.org/10.1103/PhysRevC.102.054327

    Article  CAS  ADS  Google Scholar 

  21. D. Lunney (on behalf of he ISOLTRAP Collaboration), Extending and refining the nuclear mass surface with ISOLTRAP. J. Phys. G 44, 064008 (2017) https://doi.org/10.1088/1361-6471/aa6752

  22. E. Leistenschneider, M.P. Reiter, S. Ayet San Andrés et al., Dawning of the \(N=\) 32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes. Phys. Rev. Lett. 120, 062503 (2018). https://doi.org/10.1103/PhysRevLett.120.062503

  23. D.A. Nesterenko, T. Eronen, Z. Ge, A. Kankainen, M. Vilen, Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer. Eur. Phys. J. A 57, 302 (2021). https://doi.org/10.1140/epja/s10050-021-00608-3

    Article  CAS  ADS  Google Scholar 

  24. A. Koszorús, X.F. Yang, W.G. Jiang et al., Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of \(N=\) 32. Nat. Phys. 17, 439 (2021). https://doi.org/10.1038/s41567-020-01136-5

    Article  CAS  Google Scholar 

  25. S. Raeder, H. Heggen, A. Teigelhöfer, J. Lassen, Determination of the first ionization energy of polonium by resonance ionization spectroscopy–part I: measurement of even-parity Rydberg states at TRIUMF-ISAC. Spec. Acta Part B 151, 65 (2019). https://doi.org/10.1016/j.sab.2018.08.005

    Article  CAS  Google Scholar 

  26. J.G. Cubiss, A.N. Andreyev, A.E. Barzakh et al., Laser-assisted decay spectroscopy and mass spectrometry of \(^{178}\)Au. Phys. Rev. C 102, 044332 (2020). https://doi.org/10.1103/PhysRevC.102.044332

    Article  CAS  ADS  Google Scholar 

  27. A.E. Barzakh, D. Atanasov, A.N. Andreyev et al., Hyperfine anomaly in gold and magnetic moments of \(I^{\pi }=\) 11/2\(^{-}\) gold isomers. Phys. Rev. C 101, 034308 (2020). https://doi.org/10.1103/PhysRevC.101.034308

    Article  CAS  ADS  Google Scholar 

  28. I.D. Moore, T. Eronen, D. Gorelov et al., Towards commissioning the new IGISOL-4 facility. Nucl. Instrum. Methods Phys. Res. B 317, 208 (2013). https://doi.org/10.1016/j.nimb.2013.06.036

    Article  CAS  ADS  Google Scholar 

  29. T. Eronen, V.S. Kolhinen, V.-V. Elomaa et al., JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification. Eur. Phys. J. A 48, 46 (2012). https://doi.org/10.1140/epja/i2012-12046-1

    Article  CAS  ADS  Google Scholar 

  30. Yu. Kudryavtsev, R. Ferrer, M. Huyse et al., The in-gas-jet laser ion source: resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nucl. Instrum. Methods Phys. Res. B 297, 7 (2013). https://doi.org/10.1016/j.nimb.2012.12.008

    Article  CAS  ADS  Google Scholar 

  31. R. Ferrer, A. Barzakh, B. Bastin et al., Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, 14520 (2017). https://doi.org/10.1038/ncomms14520

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Y. Yano, The RIKEN RI beam factory project: a status report. Nucl. Instrum. Methods Phys. Res. B 261, 1009 (2007). https://doi.org/10.1016/j.nimb.2007.04.174

    Article  CAS  ADS  Google Scholar 

  33. H. Watanabe, Nuclear decay studies of rare isotopes, overview of decay spectroscopy at RIBF. Eur. Phys. J. A 55, 19 (2019). https://doi.org/10.1140/epja/i2019-12677-6

    Article  CAS  ADS  Google Scholar 

  34. S. Pietri, P.H. Regan, Zs. Podolyak et al., Recent results in fragmentation isomer spectroscopy with rising. Nucl. Instrum. Methods Phys. Res. B 261, 1079 (2007). https://doi.org/10.1016/j.nimb.2007.04.219

  35. S.V. Pineda et al., Charge radius of neutron-deficient \(^{54}\)Ni and symmetry energy constraints using the difference in mirror pair charge radii. Phys. Rev. Lett. 127, 182503 (2021). https://doi.org/10.1103/PhysRevLett.127.182503

    Article  CAS  PubMed  ADS  Google Scholar 

  36. K. König et al., Surprising charge-radius kink in the Sc Isotopes at \(N=\) 20. Phys. Rev. Lett. 131, 102501 (2023). https://doi.org/10.1103/PhysRevLett.131.102501

    Article  PubMed  ADS  Google Scholar 

  37. A. Takamine, S. Iimura, D. Hou et al., Fifth report on offline tests for RF carpet transportation in RF ion guide gas cell at the SLOWRI facility. RIKEN Accel. Prog. Rep. 55, 87 (2022)

    Google Scholar 

  38. A. Takamine, M. Wada, Y. Ishida et al., Space-charge effects in the catcher gas cell of a rf ion guide. Rev. Sci. Instrum. 76, 103503 (2005). https://doi.org/10.1063/1.2090290

    Article  CAS  ADS  Google Scholar 

  39. K.R. Lund et al., Online tests of the advanced cryogenic gas stopper at NSCL. Nucl. Instr. Methods B 463, 378 (2020). https://doi.org/10.1016/j.nimb.2019.04.053

    Article  CAS  ADS  Google Scholar 

  40. C.S. Sumithrarachch et al., Beam thermalization in a large gas catcher. Nucl. Instrum. Methods B 463, 305 (2020). https://doi.org/10.1016/j.nimb.2019.04.077

    Article  CAS  ADS  Google Scholar 

  41. F. Déchery, H. Savajols, M. Authier et al., The super separator spectrometer S\(^{3}\) and the associated detection systems: SIRIUS & LEB-REGLIS3. Nucl. Instrum. Methods Phys. Res. B 376, 125 (2016). https://doi.org/10.1016/j.nimb.2016.02.036

    Article  CAS  ADS  Google Scholar 

  42. J. Uusitalo, J. Saren, J. Partanen, J. Hilton, Mass analyzing recoil apparatus (MARA). Acta Phys. Pol. B 50, 319 (2019). https://doi.org/10.5506/APhysPolB.50.319

    Article  ADS  Google Scholar 

  43. C.H. Dasso et al., Systematics of isotope production with radioactive beams. Phys. Rev. Lett. 73, 1907 (1994). https://doi.org/10.1103/PhysRevLett.73.1907

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Y.X. Watanabe et al., Pathway for the production of neutron-rich isotopes around \(N=\) 126 shell closure. Phys. Rev. Lett. 115, 172503 (2015). https://doi.org/10.1103/PhysRevLett.115.172503

    Article  CAS  PubMed  ADS  Google Scholar 

  45. M. Mukai, Y. Hirayama, Y.X. Watanabe et al., High-efficiency and low-background multi-segmented proportional gas counter for \(\beta\)-decay spectroscopy. Nucl. Instrum. Methods Phys. Res. A 884, 1 (2018). https://doi.org/10.1016/j.nima.2017.12.013

    Article  CAS  ADS  Google Scholar 

  46. Y. Hirayama, P. Schury, M. Mukai et al., Three-dimensional tracking multi-segmented proportional gas counter for \(\beta\)-decay spectroscopy of unstable nuclei. Nucl. Instrum. Methods Phys. Res. A 997, 165152 (2021). https://doi.org/10.1016/j.nima.2021.165152

    Article  CAS  Google Scholar 

  47. Y. Hirayama et al., Nuclear spectroscopy of r-process nuclei using KEK isotope separation system. Nucl. Instrum. Methods Phys. Res. B 463, 425 (2020). https://doi.org/10.1016/j.nimb.2019.04.035

    Article  CAS  ADS  Google Scholar 

  48. Y. Hirayama et al., Efficient two-color two-step laser ionization schemes of \(\lambda _1 \sim\) 250 nm and \(\lambda _2 =\) 307.9 nm for heavy refractory elements-Measurements of ionization cross-sections and hyperfine spectra of tantalum and tungsten. Rev. Sci. Instrum. 90, 115104 (2019). https://doi.org/10.1063/1.5124444

  49. J.Y. Moon et al., Development of multiple reflection time of flight mass spectrograph at KISS. RIKEN Accel. Prog. Rep. 52, 138 (2018)

    Google Scholar 

  50. P. Schury et al., First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions: toward identification of super heavy elements via mass spectroscopy. Phys. Rev. C 95, 011305(R) (2017). https://doi.org/10.1103/PhysRevC.95.011305

    Article  ADS  Google Scholar 

  51. Y. Hirayama et al., \(\beta\)- and \(\gamma\)-decay spectroscopy of \(^{197,198}\)Os. Phys. Rev. C 98, 014321 (2018). https://doi.org/10.1103/PhysRevC.98.014321

    Article  ADS  Google Scholar 

  52. Y.X. Watanabe et al., Deexcitation \(\gamma\)-ray transitions from the long-lived \(I^{\pi }=\) 13/2\(^+\) metastable state in \(^{195}\)Os. Phys. Rev. C 101, 041305 (2020). https://doi.org/10.1103/PhysRevC.101.041305

    Article  CAS  ADS  Google Scholar 

  53. P. Walker et al., Properties of \(^{187}\)Ta revealed through isomeric decay. Phys. Rev. Lett. 125, 192505 (2020). https://doi.org/10.1103/PhysRevLett.125.192505

    Article  CAS  PubMed  ADS  Google Scholar 

  54. H. Watanabe et al., Beta decay of the axially asymmetric ground state of \(^{192}\)Re. Phys. Lett. B 814, 136088 (2021). https://doi.org/10.1016/j.physletb.2021.136088

    Article  CAS  Google Scholar 

  55. M. Ahmed et al., \(\beta\)-\(\gamma\) spectroscopy of the \(^{195}\)Os nucleus. Phys. Rev. C 103, 054312 (2021). https://doi.org/10.1103/PhysRevC.103.054312

    Article  CAS  ADS  Google Scholar 

  56. Y.X. Watanabe et al., First direct observation of isomeric decay in neutron-rich odd-odd \(^{186}\)Ta. Phys. Rev. C 104, 024330 (2021). https://doi.org/10.1103/PhysRevC.104.024330

    Article  CAS  ADS  Google Scholar 

  57. M. Mukai et al., Ground-state \(\beta\)-decay spectroscopy of \(^{187}\)Ta. Phys. Rev. C 105, 034331 (2022). https://doi.org/10.1103/PhysRevC.105.034331

    Article  CAS  ADS  Google Scholar 

  58. Y. Hirayama et al., In-gas-cell laser spectroscopy of the magnetic dipole moment of the N \(\approx\) 126 isotope \(^{199}\)Pt. Phys. Rev. C 96, 014307 (2017). https://doi.org/10.1103/PhysRevC.96.014307

    Article  ADS  Google Scholar 

  59. H. Choi, Y. Hirayama et al., In-gas-cell laser ionization spectroscopy of \(^{194,196}\)Os isotopes by using a multireflection time-of-flight mass spectrograph. Phys. Rev. C 102, 034309 (2020). https://doi.org/10.1103/PhysRevC.102.034309

    Article  CAS  ADS  Google Scholar 

  60. M. Mukai, Y. Hirayama et al., In-gas-cell laser resonance ionization spectroscopy of \(^{196,197,198}\)Ir. Phys. Rev. C 102, 054307 (2020). https://doi.org/10.1103/PhysRevC.102.054307

    Article  CAS  ADS  Google Scholar 

  61. Y. Hirayama et al., In-gas-cell laser resonance ionization spectroscopy of \(^{200,201}\)Pt. Phys. Rev. C 106, 034326 (2022). https://doi.org/10.1103/PhysRevC.106.034326

    Article  CAS  ADS  Google Scholar 

  62. M. Mukai et al., Direct atomic mass determination of nuclei around 189W (planned to be submitted to Eur. Phys. J. A) (2024)

  63. T. Niwase et al., Discovery of new isotope \(^{241}\)U and systematic high-precision atomic mass measurements of neutron-rich Pa-Pu nuclei produced via multinucleon transfer reactions. Phys. Rev. Lett. 130, 132502 (2023). https://doi.org/10.1103/PhysRevLett.130.132502

    Article  CAS  PubMed  ADS  Google Scholar 

  64. X.F. Yang, S.J. Wang, S.G. Wilkins, R.F. Garcia Ruiz, Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 129, 104005 (2023). https://doi.org/10.1016/j.ppnp.2022.104005

  65. M.W. Reed, P.M. Walker, I.J. Cullen et al., Long-lived isomers in neutron-rich \(Z=\) 72–76 nuclides. Phys. Rev. C 86, 054321 (2012). https://doi.org/10.1103/PhysRevC.86.054321

    Article  CAS  ADS  Google Scholar 

  66. M. Au, M. Athanasakis-Kaklamanakis, L. Nies et al., Production of neptunium and plutonium nuclides from uranium carbide using 1.4-GeV protons. Phys. Rev. C 107, 064604 (2023). https://doi.org/10.1103/PhysRevC.107.064604

  67. P. Kunz, J. Lassen, C. Andreoiu, F.H. Garcia, Transuranium isotopes at ISAC/TRIUMF. Nucl. Instrum. Methods Phys. Res. B 534, 90 (2023). https://doi.org/10.1016/j.nimb.2022.11.006

    Article  CAS  ADS  Google Scholar 

  68. https://www.jyu.fi/en/research-groups/exotic-nuclei-and-beams-igisol. Accessed 2 Feb 2024

  69. A. Rotaru, D. Amanbayev, D. Balabanski et al., INCREASE: an in-cell reaction system for multi-nucleon transfer and spontaneous fission at the FRS ion catcher. Nucl. Instrum. Methods B 512, 83 (2022). https://doi.org/10.1016/j.nimb.2021.11.018

    Article  CAS  ADS  Google Scholar 

  70. G. Savard, M. Brodeur, J.A. Clark et al., The \(N=\) 126 factory: a new facility to produce very heavy neutron-rich isotopes. Nucl. Instrum. Methods B 463, 258 (2020). https://doi.org/10.1016/j.nimb.2019.05.024

    Article  CAS  ADS  Google Scholar 

  71. https://hiaf.impcas.ac.cn/hiaf_en/public/p/SCIENCE. Accessed 2 Feb 2024

  72. https://cordis.europa.eu/project/id/803740. Accessed 17 Jan 2024

  73. Y. Hirayama, M. Mukai, P. Schury et al., Helium gas cell with RF wire carpets for KEK isotope separation system. Nucl. Instrum. Methods Phys. Res. A 1058, 168838 (2024). https://doi.org/10.1016/j.nima.2023.168838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. JP21H04479. I thank Prof. Walker for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yoshikazu Hirayama.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirayama, Y., KISS Collaboration. Progress of isotope separators and KISS facility for the study of exotic nuclei. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01099-1

Navigation