Skip to main content
Log in

Temetos Software Platform and Its Applications in Problems of Continuum Mechanics

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The Temetos platform is designed to conduct computational experiments at all stages of analysis and study of continuum mechanics models. A module has been developed to study the stress–strain state of a system of bodies with allowance for inelastic strains and contact interaction. It was used to analyze a fuel element that included up to 100 fuel pellets and a shell. The platform’s solvers are applied to astrophysics problems. Models of the formation of accretion disks in binary star systems that allow the interpretation of observation results are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. P. Galanin, M. M. Gorbunov-Posadov, A. V. Ermakov, V. V. Lukin, A. S. Rodin, and K. L. Shapovalov, “A prototype of an integrated software platform to support computational experiments in complex mathematical modeling problems,” Tr. Inst. Sist. Progr. Ross. Akad. Nauk 26 (3), 51–68 (2014). https://doi.org/10.15514/ISPRAS-2014-26(3)-2

  2. M. P. Galanin, V. V. Lukin, A. S. Rodin, and D. L. Sorokin, “Application of the Temetos software platform for the development of an electromagnetic accelerator simulation environment,” Preprint no. 44 (Moscow: Keldysh Inst. Appl. Math. Russ. Acad. Sci., 2018). https://doi.org/10.20948/prepr-2018-44

  3. V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (MGTU, Moscow, 2008) [in Russian].

    Google Scholar 

  4. P. Wriggers, Computational Contact Mechanics (Springer, Heidelberg, 2006). https://doi.org/10.1007/978-3-540-32609-0

  5. D. L. Hagrman and G. A. Reymann, A Handbook of Materials Properties for Use in the Analysis of Lightwater Reactor Fuel Rod Behavior (INEL, Idaho, 1979).

    Google Scholar 

  6. A. Toselli and O. Widlund, Domain Decomposition methods—Algorithms and Theory (Springer, Heidelberg, 2005). https://doi.org/10.1007/b137868

  7. M. P. Galanin and A. S. Rodin, “Investigation and application of the domain decomposition method for simulating fuel elements,” Comput. Math. Math. Phys. 62 (4), 641–657 (2022). https://doi.org/10.1134/S0965542522040078

    Article  MathSciNet  Google Scholar 

  8. M. Suzuki and H. Saitou, “Light water reactor fuel analysis code FEMAXI-6 (Ver.1); Detailed structure and user’s manual,” (JAEA, Tokai, 20060). https://doi.org/10.11484/JAEA-Data-Code-2005-003

  9. V. V. Lukin, K. L. Malanchev, N. I. Shakura, K. A. Postnov, V. M. Chechetkin, and V. P. Utrobin, “3D-modeling of accretion disc in eclipsing binary system V1239 Her,” Mon. Not. R. Astron. Soc. 467 (3), 2934–2942 (2017). https://doi.org/10.1093/mnras/stx309

    Article  CAS  ADS  Google Scholar 

  10. C. D. J. Savoury, S. P. Littlefair, V. S. Dhillon, T. R. Marsh, B. T. Gaensicke, C. M. Copperwheat, P. Kerry, R. D. G. Hickman, and S. G. Parsons, “Cataclysmic variables below the period gap: Mass determinations of 14 eclipsing systems,” Mon. Not. R. Astron. Soc. 415 (3), 2025–2041 (2011). https://doi.org/10.1111/j.1365-2966.2011.18707.x

    Article  ADS  Google Scholar 

  11. T. S. Khruzina, P. Y. Golysheva, N. A. Katysheva, S. Y. Shugarov, and N. I. Shakura, “The dwarf nova V1239 herculis in quiescence,” Astron. Rep. 59 (4), 288–312 (2015). https://doi.org/10.1134/S1063772915040034

    Article  ADS  Google Scholar 

  12. M. J. McAllister, S. P. Littlefair, I. Baraffe, V. S. Dhillon, T. R. Marsh, J. Bento, J. Bochinski, M. C. P. Bours, E. Breedt, C. M. Copperwheat, L. K. Hardy, P. Kerry, S. G. Parsons, J. W. Rostron, D. I. Sahman, C. D. J. Savoury, and R. L. Tunnicliffe, “PHL 1445: An eclipsing cataclysmic variable with a substellar donor near the period minimum,” Mon. Not. R. Astron. Soc. 451 (1), 114–125 (2015). https://doi.org/10.1093/mnras/stv956

  13. D. V. Bisikalo, A. A. Boyarchuk, V. M. Chechetkin, O. A. Kuznetsov, and D. Molteni, “Three-dimensional numerical simulation of gaseous flow structure in semidetached binaries,” Mon. Not. R. Astron. Soc. 300 (1), 39–48 (1998). https://doi.org/10.1046/j.1365-8711.1998.01815.x

    Article  CAS  ADS  Google Scholar 

  14. M. P. Galanin, V. V. Lukin, and V. M. Chechetkin, “3D hydrodynamical simulation of accretion disk in binary star system using RKDG CFD solver,” J. Phys. Conf. Ser. 1103, 012019 (2018). https://doi.org/10.1088/1742-6596/1103/1/012019

    Article  CAS  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Statistical Physics. Part I (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations. Part I. Nonstiff Problems (Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1987; Mir, Moscow, 1990).

    Google Scholar 

  17. T. Nagae, K. Oka, T. Matsuda, H. Fujiwara, I. Hachisu, and H. M. J. Boffin, “Wind accretion in binary stars I. Mass accretion ratio,” Astron. Astrophys. 419, 335–343 (2004). https://doi.org/10.1051/0004-6361:20040070

    Article  CAS  ADS  Google Scholar 

  18. P. Yu. Golysheva, “Photometric studies of cataclysmic variables,” Cand. Sci. (Phys.-Math.) Dissertation, (Moscow State Univ. Moscow, 2020) [in Russian].

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 22-21-00260, https://rscf.ru/en/project/22-21-00260/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. P. Galanin, V. V. Lukin or A. S. Rodin.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The authors of this work declare that they have no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanin, M.P., Lukin, V.V. & Rodin, A.S. Temetos Software Platform and Its Applications in Problems of Continuum Mechanics. J. Appl. Ind. Math. 17, 724–736 (2023). https://doi.org/10.1134/S199047892304004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047892304004X

Keywords

Navigation