Skip to main content
Log in

Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Comparing the near-surface wind speeds obtained from the most recent global circulation model (GCM) simulations to well-known benchmark datasets like the European Centre for Medium-Range Weather Forecasts reanalysis Version 5 (ERA5) and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), is necessary to make a critical assessment. Using 28 Coupled Model Intercomparison Project Phase 6 (CMIP6)-based monthly surface wind predictions, the multi-model ensemble (MME) approach in this study generates these predictions using random forest (RF) and multiple linear regression (MLR) methods over seven geographical regions in Türkiye with varying topographic complexity between 1980 and 2014, along with an offshore region. Benchmark datasets, station observations, and individual GCM predictions are used to compare the performances of MME predictions. The analysis showed that individual and the simple mean of GCM simulations are highly biased in spatial and temporal wind means. On the other hand, the MMEs formed by using groups of GCMs have significant skill for representing temporal variability in wind speed as well as for producing annual climatology and anomaly range for topographically complex regions. In MME predictions, the correlation improvements are 38–45% for RF and 22–34% for MLR. Moreover, the effect of the model group with dynamic vegetation growth on improvement remains only marginal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The ERA5 reanalysis products are openly available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, last accessed 7 May 2021. CMIP6 models’ datasets are openly available at https://esgf-node.llnl.gov/search/cmip6/ last accessed 2 May 2021. MERRA2 data sets are openly available at https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_5.12.4/summary last accessed 15 May 2021.

Abbreviations

AOS:

Automatic observation station

CMIP6:

Coupled Model Intercomparison Project Phase 6

CO2 :

Carbon dioxide

ERA5:

5th generation ECMWF reanalysis

GCM:

Global circulation model

GW:

Gigawatt

GWEC:

Global Wind Energy Council

IEA:

International Energy Agency

IPCC:

Intergovernmental Panel on Climate Change

MAGL:

Meter above the ground level

MERRA2:

Modern-Era Retrospective analysis for Research and Applications, Version 2

MLR:

Multiple linear regression

MME:

Multi-model ensemble

RF:

Random forest

TSMS:

Turkish State of Meteorological Services

WCRP:

World Climate and Research Programme

References

  • Akinsanola AA, Ogunjobi KO, Abolude AT, & Salack S (2021) Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environ Res Lett 16(4). https://doi.org/10.1088/1748-9326/abed7a

  • Bader DC, Leung R, Taylor M, McCoy RB, Bader DC & McCoy RB (2019) E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.4497

  • Bağçaci SÇ, Yucel I, Duzenli E, Yilmaz MT (2021) Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: a Mediterranean hot spot case. Turkey Atmos Res 256:105576. https://doi.org/10.1016/J.ATMOSRES.2021.105576

    Article  Google Scholar 

  • Bentsen M, Oliviè DJL, Seland Ø, Toniazzo T, Gjermundsen A, Graff LS, Debernard JB, Gupta AK, He Y, Kirkevåg A, Schwinger J, Tjiputra J, Aas KS, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M, … Bentsen M (2019) NCC NorESM2-MM model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.8040

  • Boucher O, Denvil S, Levavasseur G, Cozic A, Caubel A, Foujols M-A, Meurdesoif Y, Cadule P, Devilliers M, Ghattas J, Lebas N, Lurton T, Mellul L, Musat I, Mignot J, Cheruy F, Boucher O, Denvil S, Levavasseur G, … Cheruy F (2018) IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.5195

  • Byun Y-H, Lim Y-J, Sung H M, Kim J, Sun M, Kim B-H, Byun Y-H, Lim Y-J, Shim S, Sung H M, Sun M, Kim J, Kim B-H, Lee J-H & Moon H (2019) NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.8378

  • Carslaw DC, Ropkins K (2012) openair — an R package for air quality data analysis. Environ Model Softw 27–28:52–61. https://doi.org/10.1016/j.envsoft.2011.09.008

    Article  Google Scholar 

  • Carvalho D, Rocha A, Gómez-Gesteira M, Silva Santos C (2017) Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renewable Energy 101:29–40. https://doi.org/10.1016/j.renene.2016.08.036

    Article  Google Scholar 

  • Carvalho D, Rocha A, Costoya X, deCastro M, Gómez-Gesteira M (2021) Wind energy resource over Europe under CMIP6 future climate projections: what changes from CMIP5 to CMIP6. Renew Sustain Energy Rev 151:111594. https://doi.org/10.1016/j.rser.2021.111594

    Article  Google Scholar 

  • Chai Z, Zhang M (2020) CAS CAS-ESM1.0 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.3353

  • Clarke L, Wei Y, De La Vega Navarro A, Garg A, Hahmann A, Khennas S, Azevedo I, Löschel A, Singh A, Steg L, Strbac G, Wada K, Shukla R, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, … Alejandro Pacheco-Rojas D (2022) a, 2022: energy systems. In IPCC, 2022: climate change 2022: mitigation of climate change. In: Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (eds) Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926.008

  • EC-Earth Consortium (EC-Earth) (2019a). EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP historical. Version 20210208[1].Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4706

  • EC-Earth Consortium (EC-Earth) (2019b). EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical. Version 20210208.Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4700

  • Dadaser-Celik F, Cengiz E (2014) Wind speed trends over Turkey from 1975 to 2006. Int J Climatol 34(6):1913–1927. https://doi.org/10.1002/joc.3810

    Article  Google Scholar 

  • Danabasoglu G & Strand G (2019a) NCAR CESM2 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.7627

  • Danabasoglu G & Strand G (2019b) NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.10071

  • Danabasoglu G, Strand G & Research NC for A (2019) NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.11297

  • Deng K, Azorin-Molina C, Minola L, Zhang G, Chen D (2021) Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J Clim 34(6):2219–2234. https://doi.org/10.1175/JCLI-D-20

    Article  Google Scholar 

  • Dey A, Sahoo DP, Kumar R & Remesan R (2022) A multimodel ensemble machine learning approach for CMIP6 climate model projections in an Indian River basin. https://doi.org/10.1002/joc.7813

  • Di Sante F, Coppola E, Giorgi F (2021) Projections of river floods in Europe using EURO-CORDEX, CMIP5 and CMIP6 simulations. Int J Climatol 41(5):3203–3221. https://doi.org/10.1002/joc.7014

    Article  Google Scholar 

  • Doddy Clarke E, Griffin S, McDermott F, Monteiro Correia J, Sweeney C (2021) Which reanalysis dataset should we use for renewable energy analysis in Ireland? Atmosphere 12(5):624. https://doi.org/10.3390/atmos12050624

    Article  Google Scholar 

  • Döscher R, Acosta M, Alessandri A, Anthoni P, Arneth A, Arsouze T, Bergmann T, Bernadello R, Bousetta S, Caron L-P, Carver G, Castrillo M, Catalano F, Cvijanovic I, Davini P, Dekker E, Doblas-Reyes F J, Docquier D, Echevarria P … Zhang Q (2020) The EC-Earth3 Earth system model for the Climate Model Intercomparison Project 6. Geosci Model Dev Discuss. Preprint. https://doi.org/10.5194/gmd-2020-446

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9(5):1937–1958. https://doi.org/10.5194/GMD-9-1937-2016

    Article  Google Scholar 

  • Fan W, Liu Y, Chappell A, Dong L, Xu R, Ekström M, Fu T-M, Zeng Z (2021) Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. J Appl Meteorol Climatol 60(1):33–50. https://doi.org/10.1175/JAMC-D-20-0037.1

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Wiley Online Library 45(2):2004. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Global Modeling and Assimilation Office (GMAO) (2015) MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly, Time-MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly. Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5(12):4. https://doi.org/10.5067/VJAFPLI1CSIV

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz‐Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M … Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):999–2049. https://doi.org/10.1002/qj.3803

  • Hussain Md & Mahmud I (2019) pyMannKendall a Python package for non parametric Mann Kendall family of trend tests. J Open Source Softw 4(39):1556 https://doi.org/10.21105/joss.01556

  • IPCC (2021) Climate change 2021: the physical science basis. In: Masson-Delmotte V, P Zhai A Pirani SL Connors C Péan S Berger N Caud, Y Chen LGoldfarb, MI Gomis, M Huang K Leitzell, E Lonnoy JBR Matthews, TKMaycock T Waterfield, O Yelekçi R Yu and B Zhou (eds.) Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press. http://interactive-atlas.ipcc.ch/

  • James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning https://doi.org/10.1007/978-1-0716-1418-1.pdf

  • Jungclaus J, Bittner M, Wieners K-H, Wachsmann F, Schupfner M, Legutke S, Giorgetta M, Reick C, Gayler V, Haak H, Vrese P, Raddatz T, Esch M, Mauritsen T, Storch J-S, Behrens J, Brovkin V, Claussen M Crueger, T … Roeckner E (2019) MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.6594

  • Krasting JP, John JG, Blanton C, McHugh C, Nikonov S, Radhakrishnan A, Rand K, Zadeh NT, Balaji V, Durachta J, Dupuis C, Zadeh NTBV, Durachta J, Dupuis C, Menzel R, Robinson T, Underwood S, Vahlenkamp H, Dunne KA … Wittenberg AT, X Y Z M (2018) NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP. Version 20210213. Earth System Grid Federation

  • Li T, Jiang Z, Treut HL, Li L, Zhao L, Ge L (2021) Machine learning to optimize climate projection over China with multi-model ensemble simulations. Environ Res Lett 16(9):094028. https://doi.org/10.1088/1748-9326/ac1d0c

    Article  Google Scholar 

  • Li L, Li L, Yu Y, Dong L, Xie J, Tang Y (2019) CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.3356

  • Lionello P, Scarascia L (2018) The relation between climate change in the Mediterranean region and global warming. Reg Environ Change 18(5):1481–1493. https://doi.org/10.1007/s10113-018-1290-1

    Article  Google Scholar 

  • Logothetis I, Tourpali K, Misios S, Zanis P (2020) Etesians and the summer circulation over East Mediterranean in Coupled Model Intercomparison Project Phase 5 simulations: connections to the Indian summer monsoon. Int J Climatol 40(2):1118–1131. https://doi.org/10.1002/joc.6259

    Article  Google Scholar 

  • Mcinnes KL, Erwin TA, Bathols JM (2011) Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci Lett 12(4):325–333. https://doi.org/10.1002/asl.341

    Article  Google Scholar 

  • Ministry of Energy and Natural Resources (2020) Wind energy potential atlas of Türkiye. https://repa.enerji.gov.tr/REPA/

  • Molina MO, Gutiérrez C, Sánchez E (2021) Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int J Climatol 41(10):4864–4878. https://doi.org/10.1002/joc.7103Türkiye

    Article  Google Scholar 

  • Najac J, Boé J, Terray L (2009) A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Clim Dyn 32(5):615–634. https://doi.org/10.1007/s00382-008-0440-4

    Article  Google Scholar 

  • NASA Goddard Institute for Space Studies (NASA/GISS) (2018) NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical. Version 20210405[1].Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7127

  • NASA Goddard Institute for Space Studies (NASA/GISS) (2019a) NASA-GISS GISS-E2-1-G-CC model output prepared for CMIP6 CMIP historical. Version 20210501[1].Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.11762

  • NASA Goddard Institute for Space Studies (NASA/GISS) (2019b) NASA-GISS GISS-E2.1H model output prepared for CMIP6 CMIP historical. Version 20210505[1].Earth System Grid Federation.https://doi.org/10.22033/ESGF/CMIP6.7128

  • Neubauer D, Ferrachat S, Siegenthaler-Le Drian C, Stoll J, Folini D S, Tegen I, Wieners K-H, Mauritsen T, Stemmler I, Barthel S, Bey I, Daskalakis N, Heinold B, Kokkola H, Partridge D, Rast S, Schmidt H, Schutgens N, Stanelle T … Neubauer D (2019) HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP. https://doi.org/10.22033/ESGF/CMIP6.1622

  • Olauson J (2018) ERA5: the new champion of wind power modelling? Renew Energy 126:322–331. https://doi.org/10.1016/j.renene.2018.03.056

    Article  Google Scholar 

  • Park S, Shin J, Park S, Shin J (2019) SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.7789

  • Pedregosa F, Michel V, Grisel Oliviergrisel O, Blondel M, Prettenhofer P, Weiss R, Vanderplas J, Cournapeau D, Pedregosa F, Varoquaux G, Gramfort A, Thirion B, Grisel O, Dubourg V, Passos A, Brucher M, Perrot andÉdouardand M, Duchesnay andÉdouard, & Duchesnay Edouardduchesnay Fré (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/

  • Poupkou A, Zanis P, Nastos P, Papanastasiou D, Melas D, Tourpali K, Zerefos C (2011) Present climate trend analysis of the Etesian winds in the Aegean Sea. Theoret Appl Climatol 106(3–4):459–472. https://doi.org/10.1007/s00704-011-0443-7

    Article  Google Scholar 

  • Pryor SC, Schoof JT (2010) Importance of the SRES in projections of climate change impacts on near-surface wind regimes. Meteorol Z 19(3):267–274. https://doi.org/10.1127/0941-2948/2010/0454

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Bukovsky MS, Leung LR, Sakaguchi K (2020) Climate change impacts on wind power generation. Nature Reviews Earth & Environment 1(12):627–643

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Young D T, Takle ES, Arritt RW, Flory D, Gutowski WJ, Nunes A, & Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res 114(D14). https://doi.org/10.1029/2008JD011416

  • Ramon J, Lledó L, Torralba V, Soret A, Doblas-Reyes FJ (2019) What global reanalysis best represents near-surface winds? Q J R Meteorol Soc 145(724):3236–3251. https://doi.org/10.1002/qj.3616

    Article  Google Scholar 

  • Rong, Xinyao (2019). CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP historical. Version 20210521[1].Earth System Grid Federation.https://doi.org/10.22033/ESGF/CMIP6.9754

  • Sahin S, Türkeş M (2013) Contemporary surface wind climatology of Turkey. Theoret Appl Climatol 113(1–2):337–349. https://doi.org/10.1007/s00704-012-0789-5

    Article  Google Scholar 

  • Seland Ø, Bentsen M, Oliviè D J L, Toniazzo T, Gjermundsen A, Graff L S, Debernard J B, Gupta A K, He Y, Kirkevåg A, Schwinger J, Tjiputra J, Aas K S, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M … Seland Ø (2019) NCC NorESM2-LM model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.8036

  • Serkendiz H, Tatlı H, Öztürk B (2018) Türkiye’deki Potansiyel Rüzgâr Enerji Yoğunluğunun Yeniden Tanımlanması. J Aware 3(5):739–750. https://doi.org/10.26809/joa.2018548684

  • Shen C, Zha J, Li Z, Azorin-Molina C, Deng K, Minola L, Chen D (2022) Evaluation of global terrestrial near-surface wind speed simulated by CMIP6 models and their future projections. Ann N Y Acad Sci 1518(1):249–263. https://doi.org/10.1111/nyas.14910

    Article  Google Scholar 

  • Shen C, Zha J, Zhao D, Wu J, Fan W, Yang M, & Li Z (2021) Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6 GCMs. Environ Res Lett 16(8). https://doi.org/10.1088/1748-9326/ac1378

  • Smith B (2001) LPJ-GUESS-an ecosystem modelling framework. INES, Sölvegatan 12:22362

    Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Solheim L, Salzen K, Yang D … Swart NC (2019) CCCma CanESM5 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.3610

  • Tatebe H, Watanabe M, Tatebe H, Atmosphere and Ocean Research Institute the U of T, Technology J A for M-E S and, Studies N I for E, Science R C for C, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F, Chikira M, Watanabe S, Mori M … Kimoto M (2018) MIROC MIROC6 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.5603

  • Tobin I, Vautard R, Balog I, Bréon FM, Jerez S, Ruti PM, Thais F, Vrac M, Yiou P (2015) Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim Change 128(1–2):99–112. https://doi.org/10.1007/s10584-014-1291-0

    Article  Google Scholar 

  • Tuel A, Eltahir EAB (2020) Why is the Mediterranean a climate change hot spot? J Clim 33(14):5829–5843. https://doi.org/10.1175/JCLI-D-19-0910.1

    Article  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11):756–761

    Article  CAS  Google Scholar 

  • Volodin E, Mortikov E, Gritsun A, Lykossov V, Galin V, Diansky N, Gusev A, Kostrykin S, Iakovlev N, Shestakova A, Emelina S, Volodin E (2019) INM INM-CM4–8 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.5069

  • Wieners K-H, Giorgetta M, Jungclaus J, Reick C, Esch M, Bittner M, Legutke S, Schupfner M, Wachsmann F, Gayler V, Haak H, Vrese P, Raddatz T, Mauritsen T, Storch J-S, Behrens J, Brovkin V, Claussen M, Crueger T … Roeckner E (2019) MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.6595

  • Wohland J, Omrani NE, Witthaut D, Keenlyside NS (2019) Inconsistent wind speed trends in current twentieth century reanalyses. J Geophys Res Atmos 124(4):1931–1940

    Article  Google Scholar 

  • Wohland J, Folini D, Pickering B (2021) Wind speed stilling and its recovery due to internal climate variability. Earth Syst Dyn 12(4):1239–1251

    Article  Google Scholar 

  • Wu TCMDMFYJWLJLWLQSXXXYJZFZJZLZY (2018) BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.2948

  • Yu Y, Yu Y (2019) CAS FGOALS-f3-L model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.3355

  • Yukimoto S, Koshiro T, Kawai H, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yoshimura H, Shindo E, Mizuta R, Ishii M, Obata A, Adachi Y, Yukimoto S, Koshiro T, Kawai H … Institute MR (2019) MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.6842

  • Zha J, Shen C, Li Z, Wu J, Zhao D, Fan W, Sun M, Azorin-Molina C, & Deng K (2021) Projected changes in global terrestrial near-surface wind speed in 1.5°C-4.0°C global warming levels. Environ Res Lett 16(11). https://doi.org/10.1088/1748-9326/ac2fdd

  • Zhang Z, Wang K, Chen D, Li J, Dickinson R (2019) Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the Northern Hemisphere lands. J Clim 32(21):7421–7435. https://doi.org/10.1175/JCLI-D-18-0691.1

    Article  Google Scholar 

  • Zhang J, Wu T, Shi X, Zhang F, Li J, Chu M, Liu Q, Yan J, Ma Q, Wei M, & Zhang J (2018) BCC BCC-ESM1. https://doi.org/10.22033/ESGF/CMIP6.2949

  • Zhao X, Huang G, Li Y, Lin Q, Jin J, Lu C, Guo J (2021) Projections of meteorological drought based on CMIP6 multi-model ensemble: a case study of Henan Province. J Contam Hydrol 243:103887. https://doi.org/10.1016/J.JCONHYD.2021.103887

Download references

Acknowledgements

We thank the Turkish State of Meteorology for providing observed wind speed data for the entire Türkiye, ECMWF for ERA5 products, NASA for MERRA2 products, and WCRP for CMIP6 products.

Author information

Authors and Affiliations

Authors

Contributions

I.I.C. and I.Y. wrote the main manuscript text and I.I.C. prepared all figures and tables. M.T.Y. and B.O. contributed and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to I. I. Çetin.

Ethics declarations

Competing interests

The authors declare no competing interests.This study is part of Irem Isik Cetin’s PhD Thesis which is supervised by Prof.Dr. Ismail Yücel, obtained at the Department of Earth System Science, Middle East Tehnical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetin, I.I., Yücel, I., Yılmaz, M.T. et al. Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. Theor Appl Climatol 155, 4101–4121 (2024). https://doi.org/10.1007/s00704-024-04869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-024-04869-y

Navigation