Skip to main content

Advertisement

Log in

MWCNTs-supported Ni electrocatalyst-modified CPE as a sensing platform for voltammetric determination of ibuprofen in pharmaceutical formulations

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this work, a sensitive and reproducible voltammetric methodology using a modified carbon paste electrode has been established for the determination of the non-steroidal anti-inflammatory drug ibuprofen. MWCNTs-supported Ni electrocatalyst was applied as a bulk carbon paste modifier to fabricate the Ni-MWCNTs-CPE sensor, while square-wave voltammetry was utilized as an electroanalytical technique. Besides, cyclic voltammetry was used to study the electrochemical behavior of ibuprofen on the proposed sensor. Parameters of square-wave voltammetry were optimized using acetate buffer pH 4.5 as an optimal electrolyte. In addition, the sensitivity of the modified carbon paste electrode, as a sensing element, was compared to the unmodified one. Under optimized conditions, a wide linear range was obtained with LOD and LOQ values of 0.86 and 2.61 µM, and 0.13 and 0.39 µM, for bare CPE and Ni-MWCNTs-CPE, respectively. The presence of the modifier in the paste improved the sensitivity of the carbon paste electrode by almost 7 times. In addition, the newly fabricated Ni-MWCNTs-CPE sensor showed better results in terms of precision (RSD up to 2.49%). Finally, the validated voltammetric methodology was successfully applied for the determination of ibuprofen content in pharmaceutical formulations, without any complicated preliminary preparation steps, with recovery values between 94.4 and 98.1%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Rainsford KD (2015) Pharmacology and toxicology of ibuprofen. In: Rainsford KD (ed) Ibuprofen discovery, development and therapeutics. Wiley, Chichester, p 132

    Chapter  Google Scholar 

  2. Rainsford KD (2015) History and development of ibuprofen. In: Rainsford KD (ed) Ibuprofen discovery, development and therapeutics. Wiley, Chichester, p 1

    Chapter  Google Scholar 

  3. Kean WF, Rainsford KD, Buchanan WW (2015) Therapeutics of ibuprofen in rheumatic and other chronic painful diseases. In: Rainsford KD (ed) Ibuprofen discovery, development and therapeutics. Wiley, Chichester, p 237

    Chapter  Google Scholar 

  4. Sachs CJ (2005) Am Fam Physician 71:913

    PubMed  Google Scholar 

  5. Wood D, Monaghan J, Streete P, Jones AL, Dargan PI (2006) Crit Care 10:R44

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zambakjian C, Sakur AA (2020) Future J Pharm Sci 6:110

    Article  Google Scholar 

  7. Waraksa E, Wójtowicz-Zawadka M, Kwiatkowska D, Jarek A, Małkowska A, Wrzesień R, Namieśnik J (2018) J Pharm Biomed Anal 152:279

    Article  CAS  PubMed  Google Scholar 

  8. Yuvali D, Narin I, Soylak M, Yilmaz E (2020) J Pharm Biomed Anal 179:113001

    Article  CAS  PubMed  Google Scholar 

  9. Alsaad AAA, Alassadi EAS, Al-Salman HNK, Hussein HH (2019) Asian J Pharm 13:141

    CAS  Google Scholar 

  10. Ragab MAA, Abdel-Hay MH, Ahmed HM, Mohyeldin SM (2019) J Chromatogr Sci 57:592

    Article  CAS  PubMed  Google Scholar 

  11. Borahan T, Unutkan T, Şahin A, Bakırdere S (2019) J Sep Sci 42:678

    Article  CAS  PubMed  Google Scholar 

  12. Han Z, Lu L, Wang L, Yan Z, Wang X (2017) Chromatographia 80:1353

    Article  CAS  Google Scholar 

  13. Naghdi E, Fakhari AR, Ghasemi JB (2020) J Iran Chem Soc 17:1467

    Article  CAS  Google Scholar 

  14. Salem YA, Hammouda MEA, Abu El-Enin MA, El-Ashry SM (2019) Spectrochim Acta A Mol Biomol Spectrosc 210:387

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Aydoğmuş Z, Asfoor A (2022) Chin J Anal Chem 50:100063

    Article  Google Scholar 

  16. Kalambate PK, Noiphung J, Rodthongkum N, Larpant N, Thirabowonkitphithan P, Rojanarata T, Hasan M, Huang Y, Laiwattanapaisal W (2021) TrAC Trends Anal Chem 143:116403

    Article  CAS  Google Scholar 

  17. Safaei M, Shishehbore MR (2021) Talanta 229:122247

    Article  CAS  PubMed  Google Scholar 

  18. Stojanović ZS, Đurović AD, Ashrafi AM, Koudelková Z, Zítka O, Richtera L (2020) Sens Actuators B Chem 318:128141

    Article  Google Scholar 

  19. Stojanović Z, Đurović A, Kravić S, Grahovac N, Suturović Z, Bursić V, Vuković G, Brezo T (2016) Anal Methods 8:2698

    Article  Google Scholar 

  20. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Sens Int 1:100003

    Article  Google Scholar 

  21. Wang J (2006) Analytical electrochemistry. Wiley, Hoboken, NJ

    Book  Google Scholar 

  22. Bard Allen J, Faulkner Larry R (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, NY

    Google Scholar 

  23. Stoytcheva M, Zlatev R, Velkova Z, Gochev V, Valdez B, Kirova G, Hristova Y (2022) Int J Electrochem Sci 17:220668

    Article  CAS  Google Scholar 

  24. Mutharani B, Rajakumaran R, Chen SM, Ranganathan P, Chen TW, Farraj DAA, Ali MA, Al-Hemaid FMA (2020) Microchem J 159:105378

    Article  CAS  Google Scholar 

  25. Apetrei IM, Bejinaru AA, Boev M, Apetrei C, Buzia OD (2017) Farmacia 5:790

    Google Scholar 

  26. Đurović A, Stojanović Z, Bytešníková Z, Kravić S, Švec P, Přibyl J, Richtera L (2022) J Mater Sci 57:5533

    Article  ADS  Google Scholar 

  27. Svancara I, Kalcher K, Walcarius A, Vytras K (2012) Electroanalysis with carbon paste electrodes. CRC Press

    Book  Google Scholar 

  28. Gosser KD (1993) Cyclic voltammetry simulation and analysis of reaction mechanisms. VCH, Weinheim

    Google Scholar 

  29. Laviron E (1974) J Electroanal Chem Interfacial Electrochem 52:355

    Article  CAS  Google Scholar 

  30. Švorc Ľ, Strežová I, Kianičková K, Stanković D, Otřísal P, Samphao A (2018) J Electroanal Chem 822:144

    Article  Google Scholar 

  31. (1995) ICH Topic Q 2 (R1) validation of analytical procedures: text and methodology. In: European Medicines Agency. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf. Accessed 6 June 2022

  32. Đurović A, Stojanović Z, Kravić S, Kos J, Richtera L (2020) Electroanalysis 32:741

    Article  Google Scholar 

  33. Hayat EO, Aamor M, Mustapha O, Mohamed M, Haimouti EL, Tarik EO (2022) Anal Bioanal Electrochem 14:18

    Google Scholar 

  34. Rivera-Hernández SI, Álvarez-Romero GA, Corona-Avendaño S, Páez-Hernández ME, Galán-Vidal CA, Romero-Romo M (2016) Instrum Sci Technol 44:483

    Article  Google Scholar 

  35. Loudiki A, Boumya W, Hammani H, Nasrellah H, Bouabi YE, Zeroual M, Farahi A, Lahrich S, Hnini K, Achak M, Bakasse M, El Mhammedi MA (2016) Mater Sci Eng C 69:616

    Article  CAS  Google Scholar 

  36. Loudiki A, Hammani H, Boumya W, Lahrich S, Farahi A, Achak M, Bakasse M, El Mhammedi MA (2016) Appl Clay Sci 123:99

    Article  CAS  Google Scholar 

  37. Panić S, Rakić D, Guzsvány V, Kiss E, Boskovic G, Kónya Z, Kukovecz Á (2015) Chemosphere 141:87

    Article  ADS  PubMed  Google Scholar 

  38. Ratkovic S, Vujicic D, Kiss E, Boskovic G, Geszti O (2011) Mater Chem Phys 129:398

    Article  CAS  Google Scholar 

  39. Azadi P, Farnood R, Meier E (2010) J Phys Chem A 114:3962

    Article  CAS  PubMed  Google Scholar 

  40. Liu S, Yan Z, Zhang Y, Wang R, Luo SZ, Jing F, Chu W (2018) ACS Sustain Chem Eng 6:14403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (project number 451-03-47/2023-01/ 200134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana D. Đurović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1095 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Đurović, A.D., Gudelj, V.V., Panić, S.N. et al. MWCNTs-supported Ni electrocatalyst-modified CPE as a sensing platform for voltammetric determination of ibuprofen in pharmaceutical formulations. Monatsh Chem 155, 131–141 (2024). https://doi.org/10.1007/s00706-023-03158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03158-0

Keywords

Navigation