Skip to main content
Log in

A low-Reynolds-number k–ε model for polymer drag-reduction prediction in turbulent pipe flow

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Pipeline transport at high Reynolds number can result in significant turbulent losses. One of the most effective methods for turbulent drag reduction is adding a very small amount of polymer drag-reducing agent to the pipeline. However, due to the complex interaction between polymers and turbulence, turbulence models incorporating polymer additives remain to be studied and developed. In the present work, we investigated the turbulence model using Reynolds averaged numerical simulation (RANS) to describe polyacrylamide drag reduction flow. A low-Reynolds-number kε model in turbulent flow has been developed by considering the concentration and type of polymers, which can be applied for polymer drag reduction prediction in the pipe. Mean velocity profile Uf, turbulent intensity, turbulent kinetic energy k, and turbulent dissipation rate ε in the regions of viscous sublayer, buffer layer and logarithmic layer have been predicted with various concentration θ, Reynolds number Re, degradation degrees, and changing laws of these factors have been revealed with wall distance. The developed turbulence model showed a good capability to qualitatively forecast mean velocity profile, turbulent intensity, turbulent kinetic energy, and turbulent dissipation rate, and the prediction error between the experimental and simulated values falls along the y = x curve, which can be used for the investigation and prediction of varies water-soluble, oil-soluble polymers in turbulent drag reduction flow in pipes with other parameters such as pipe diameter, pipe length, and the Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data supporting the results of the study will be made available subject to an internal approval process. The data underlying this article are available at https://doi.org/10.1017/S0022112097004850.

Abbreviations

A:

Types of polymers

L :

Pipe length (m)

D :

Pipe diameter (m)

H :

Characteristic length (m)

y + :

Distance from the wall was normalized

u 0 :

Initial velocity (m/s)

u τ :

Friction velocity (m/s)

\(u^+\) :

Velocity normalized using friction velocity

U f :

Mean velocity (m/s)

Re:

Reynolds number

Reτ :

Characteristic Reynolds number

DR:

Drag reduction efficiency (%)

θ :

Concentration (%)

μ t :

Turbulent viscosity (kg/(m s))

k :

Turbulent kinetic energy (J)

ε :

Turbulent dissipation rate

τ ij :

Reynolds stress (Pa)

\(\tau_{\text{w}}\) :

Wall shear stress (Pa)

f μ :

Damping function

f(θ, A) :

Additional correction function

f(c kk):

Function related to the molecular deformation rate tensor

f w :

Wall friction resistance coefficient

M :

Molecular weight (g/mol)

u + rms :

The root mean square (RMS) value of the velocity fluctuationsy

LDA:

Laser Doppler Anemometry

PIV:

Particle Image Velocimetry

DNS:

Direct Numerical Simulation

RANS:

Reynolds averaged numerical simulation

ppm:

Parts per million

Exp:

Experimental

References

  1. Toms BA (1948) Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: First International Congress on Rheology

  2. Mortimer LF, Fairweather M (2022) Prediction of polymer extension, drag reduction, and vortex interaction in direct numerical simulation of turbulent channel flows. Phys Fluids. https://doi.org/10.1063/5.0094978

    Article  Google Scholar 

  3. Koosinlin ML, Launder BE et al (1973) The calculation of low Reynolds number phenomena with a two-equation model of turbulence. Int J Heat Mass Transf 16(6):1119–1130. https://doi.org/10.2514/3.7323

    Article  Google Scholar 

  4. Hassid S, Poreh M (1975) A turbulent energy model for flows with drag reduction. J Fluids Eng 97(2):234–241. https://doi.org/10.1115/1.3447256

    Article  Google Scholar 

  5. Poreh M, Hassid S (1977) Mean velocity and turbulent energy closures for flows with drag reduction. Phys Fluids 20(10):S193-196. https://doi.org/10.1063/1.861729

    Article  ADS  Google Scholar 

  6. Edwards MF, Smith R (1980) The turbulent flow of non-Newtonian fluids in the absence of anomalous wall effects. J Non-Newton Fluid Mech 7(1):77–90. https://doi.org/10.1016/0377-0257(80)85016-6

    Article  CAS  Google Scholar 

  7. Azouz I, Shirazi SA (1997) Numerical simulation on drag reducing turbulent flow in annular conduits. J Fluids Eng 119(4):838–846

    Article  CAS  Google Scholar 

  8. Cruz DOA, Pinho FT (2003) Turbulent pipe flow predictions with a low Reynolds number k–ε model for drag reducing fluids. J Non-Newton Fluid Mech 114(2–3):109–148. https://doi.org/10.1016/s0377-0257(03)00119-8

    Article  CAS  Google Scholar 

  9. Cruz DOA, Pinho FT et al (2004) Modelling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J Non-Newton Fluid Mech 121(2–3):127–141. https://doi.org/10.1016/j.jnnfm.2004.05.004

    Article  CAS  Google Scholar 

  10. Pinho FT (2003) A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k–ε type closure. J Non-Newton Fluid Mech 114(2–3):149–184. https://doi.org/10.1016/S0377-0257(03)00120-4

    Article  CAS  Google Scholar 

  11. Resende PR, Escudier MP et al (2006) Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers. Int J Heat Fluid Flow 27(2):204–219. https://doi.org/10.1016/j.ijheatfluidflow.2005.08.002

    Article  CAS  Google Scholar 

  12. Pinho FT, Li CF, Younis BA, Sureshkumar R (2008) A low Reynolds number turbulence closure for viscoelastic fluids. J Non-Newton Fluid Mech 154(2–3):89–108. https://doi.org/10.1016/j.jnnfm.2008.02.008

    Article  CAS  Google Scholar 

  13. Resende PR, Kim K et al (2011) A FENE-P k–ε turbulence model for low and intermediate regimes of polymer-induced drag reduction. J Non-Newton Fluid Mech 166(12–13):639–660. https://doi.org/10.1016/j.jnnfm.2011.02.012

    Article  CAS  Google Scholar 

  14. Resende PR, Pinho FT et al (2013) Development of a low-Reynolds-number k-ω model for FENE-P fluids. Flow Turbul Combust 90(1):69–94. https://doi.org/10.1007/s10494-012-9424-x

    Article  CAS  Google Scholar 

  15. Masoudian M, Pinho FT et al (2016) A RANS model for heat transfer reduction in viscoelastic turbulent flow. Int J Heat Transf 100:332–346. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.053

    Article  Google Scholar 

  16. Resende PR, Afonso AM et al (2018) An improved k–ε turbulence model for FENE-P fluids capable to reach high drag reduction regime. Int J Heat Fluid Flow 73:30–41. https://doi.org/10.1016/j.ijheatfluidflow.2018.07.004

    Article  Google Scholar 

  17. Chauhan A, Sasmal C et al (2021) Effects of blockage and fluid inertia on drag and heat transfer of a solid sphere translating in FENE-P viscoelastic fluids in a tube. J Non-Newton Fluid Mech 294:104593. https://doi.org/10.1016/j.jnnfm.2021.104593

    Article  MathSciNet  CAS  Google Scholar 

  18. Wu S, Solano T et al (2021) Formation of a strong negative wake behind a helical swimmer in a viscoelastic fluid. J Fluid Mech 942:A10. https://doi.org/10.48550/arXiv.2109.07675

    Article  MathSciNet  Google Scholar 

  19. Riaz MB, Rehman AU et al (2023) Heat and mass flux analysis of magneto-free-convection flow of Oldroyd-B fluid through porous layered inclined plate. Sci Rep 13:653. https://doi.org/10.1038/s41598-022-27265-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li YJ, Wu ZG (2023) Pointwise space-time estimates of compressible Oldroyd-B model. J Differ Equ 351:100–130. https://doi.org/10.1016/j.jde.2022.12.020

    Article  ADS  MathSciNet  Google Scholar 

  21. Li FC, Bo Y et al (2012) Turbulent drag reduction by surfactant additives. Higher Education Press, Beijing

    Google Scholar 

  22. Vachagina E, Dushin N et al (2022) Exact solution for viscoelastic flow in pipe and experimental validation. Polymers 14(2):334. https://doi.org/10.3390/polym14020334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Housiadas KD (2023) Improved convergence based on two-point Pade approximants: Simple shear, uniaxial elongation, and flow past a sphere. Phys Fluids 35(1):013101. https://doi.org/10.1063/5.0134158

    Article  ADS  CAS  Google Scholar 

  24. Tao W (2001) Numerical heat transfer. Xi’an Jiaotong University Press

    Google Scholar 

  25. Zhang W-H, Zhang H-N et al (2021) Re-picturing viscoelastic drag-reducing turbulence by introducing dynamics of elasto-inertial turbulence. J Fluid Mech 940(A31):1–29. https://doi.org/10.48550/arXiv.2108.04528

    Article  Google Scholar 

  26. Wang F (2004) Computational fluid dynamics analysis. Tsinghua University Press

    Google Scholar 

  27. Boussinesq J (1897) Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes à grande section. Gauthier-Villars

    Google Scholar 

  28. Latmder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic Press

    Google Scholar 

  29. Abid R (1993) Evaluation of two-equation turbulence models for predicting transitional flows. Int J Eng Sci 31(6):831–840. https://doi.org/10.1016/0020-7225(93)90096-D

    Article  CAS  Google Scholar 

  30. Lam CKG, Bremhorst K (1981) A modified form of the k–ε model for predicting wall turbulence. J Fluids Eng 103(3):456–460. https://doi.org/10.1115/1.3240815

    Article  Google Scholar 

  31. Jones WP, Launder BE (1973) The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transf 16(6):1119–1130. https://doi.org/10.1016/0017-9310(73)90125-7

    Article  Google Scholar 

  32. Yang Z, Shih TH (1993) New time scale based k-epsilon model for near-wall turbulence. AIAA J 31(7):1191–1198. https://doi.org/10.2514/3.11752

    Article  ADS  CAS  Google Scholar 

  33. Abe KI, Nagano Y et al (1992) An improved k–ε model for prediction of turbulent flows with separation and reattachment. Nihon Kikai Gakkai Ronbunshu, B Hen. Trans Jpn Soc Mech Eng Part B 58(554):3003–3010. https://doi.org/10.1299/kikaib.58.3003

    Article  CAS  Google Scholar 

  34. Chang KC, Hsieh WD, Chen CS (1995) A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe expansion. J Fluids Eng 117(3):417–423

    Article  Google Scholar 

  35. Den Toonder JMJ, Hulsen MA et al (1997) Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J Fluid Mech 337:193–231. https://doi.org/10.1017/S0022112097004850

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge support from assistance from Ufa State Petroleum Technological University and Southwest Petroleum University. This work was supported by the National Natural Science Foundation of China (No. 52004241), the Natural Science Foundation of Sichuan Province (No. 2022NSFSC1018), the Open Fund Project of SINOPEC Key Laboratory for EOR of Fractured-vuggy Reservoir (34400000-22-ZC0607-0006) and the China Scholarship Council (No. 201508090094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interests to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

The study was approved by the Petroleum Engineering school of Southwest Petroleum University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, M., Valeev, A.R. et al. A low-Reynolds-number k–ε model for polymer drag-reduction prediction in turbulent pipe flow. Korea-Aust. Rheol. J. (2024). https://doi.org/10.1007/s13367-024-00087-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13367-024-00087-0

Keywords

Navigation